Journal of
MASS
Differentiation of isomeric phenols using α-PVC
L. M. Amundson, E. Archibold, B. E. Winger, H. I. Kenttämaa.
Differentiation of protonated aromatic regioisomers related to lignin
by reactions with trimethylborate in a Fourier transform ion cyclotron
resonance mass spectrometer. J. Am. Soc. Mass Spectrom. 2011, 22,
1040; (y) L. Trupia, N. Dechamps, R. Flammang, G. Bouchoux,
M. T. Nguyen, P. Gerbaux. Isomeric recognition by ion/molecule
reactions: the ionized phenol-cyclohexadienone case. J. Am. Soc. Mass
Spectrom. 2008, 19, 126; (z) A. A. Mosi, W. R. Cullen, G. K. Eigendorf.
Ion–molecule reactions of halocarbon cations with polycyclic
hydrocarbons in a quadrupole ion trap. Part I – differentiation of
structural isomers. J. Mass Spectrom. 1997, 32, 864.
References
[1] (a) W. A. Tao, F. C. Gozzo, R. G. Cooks. Mass spectrometric quantitation
of chiral drugs by the kinetic method. Anal. Chem. 2001, 73, 1692; (b)
L. Wu, E. C. Meurer, B. Young, P. Yang, M. N. Eberlin, R. G. Cooks.
Isomeric differentiation and quantification of alpha, beta-amino acid-
containing tripeptides by the kinetic method: alkali metal-bound
dimeric cluster ions. Int. J. Mass Spectrom. 2004, 231, 103; (c)
A. E. P. M. Sorrilha, F. C. Gozzo, R. S. Pimpim, M. N. Eberlin. Multiple
stage pentaquadrupole mass spectrometry for generation and
characterization of gas-phase ionic species. The case of the PyC2H5
+.
isomers. J. Am. Soc. Mass Spectrom. 1996, 7, 1126; (d) J. S. Splitter,
F. Turecek (Eds). Applications of Mass Spectrometry to Organic
Stereochemistry. VCH Publishers: New York, 1994; (e) J. Y. Salpin,
J. Tortajada. Structural characterization of hexoses and pentoses
using lead cationization. An electrospray ionization and tandem mass
spectrometric study. J. Mass Spectrom. 2002, 37, 379; (f) M. L. Gross,
P. H. Lin, S. J. Franklin. Analytical applications of ion-molecule
reactions. Identification of C5H10 isomers by ion-cyclotron resonance
spectrometry. Anal. Chem. 1972, 44, 974; (g) T. Donovan,
C. J. Brodbelt. Examination of ortho effect in the collisionally activated
dissociation of closed-shell aromatic ions. Org. Mass Spectrom. 1992,
27, 9; (h) R. H. Staley, R. R. Corderman, M. S. Foster, J. L. Beauchamp.
Nucleophilic-attack on protonated oxiranes in gas-phase.
Identification of C2H5O+ isomeric ions corresponding to protonated
ethylene oxide. J. Am. Chem. Soc. 1974, 96, 1260; (i) F. Kjeldsen,
K. F. Haselmann, E. S. Sorensen, R. A. Zubarev. Distinguishing of
Ile/Leu amino acid residues in the PP3 protein by (hot) electron
capture dissociation in Fourier transform ion cyclotron resonance
mass spectrometry. Anal. Chem. 2003, 75, 1267; (j) F. F. Hsu, J. Turk,
M. L. Gross. Structural distinction among inositol phosphate isomers
using high-energy and low-energy collisional-activated dissociation
tandem mass spectrometry with electrospray ionization. J. Mass
Spectrom. 2003, 38, 447; (k) P. Dwivedi, C. Wu, L. M. Matz,
B. H. Clowers, W. F. Siems, H. H. Hill. Gas-phase chiral separations by
ion mobility spectrometry. Anal. Chem. 2006, 78, 8200; (l) M. Fu,
P. Duan, S. Li, S. C. Habicht, D. S. Pinkston, N. R. Vinueza,
H. I. Kenttämaa. Regioselective ion–molecule reactions for the mass
spectrometric differentiation of protonated isomeric aromatic
diamines. Analyst 2008, 133, 452; (m) M. Fu, P. Duan, J. Gao,
H. I. Kenttämaa. Ion–molecule reactions for the differentiation of
primary, secondary and tertiary hydroxyl functionalities in protonated
analytes in a tandem mass spectrometer. Analyst, 2012, 137, 5720; (n)
L. A. B. Moraes, A. A. Sabino, E. C. Meurer, M. N. Eberlin. Absolute
configuration assignment of ortho, meta, or para isomers by mass
spectrometry. J. Am. Soc. Mass Spectrom. 2005, 16, 431; (o)
M. Benassi, Y. E. Corilo, D. Uria, R. Augusti, M. N. Eberlin. Recognition
and resolution of isomeric alkyl anilines by mass spectrometry. J. Am.
Soc. Mass Spectrom. 2009, 20, 269; (p) L. L. da Rocha, R. Sparrapan,
R. Augusti, M. N. Eberlin. Direct assignment of positional isomers by
mass spectrometry: ortho, meta and para acyl and amidyl anilines
and phenols and derivatives. J. Mass Spectrom. 2004, 39, 1176; (q)
Y. E. Corilo, M. N. Eberlin. Recognizing α-, β- or γ-substitution in
pyridines by mass spectrometry. J. Mass Spectrom. 2008, 43, 12; (r)
M. Benassi, M. N. Eberlin. Absolute assignment of constitutional
isomers via structurally diagnostic fragment ions: the challenging
case of α-and β-acyl naphthalenes. J. Am. Soc. Mass Spectrom. 2010,
21, 2041; (s) R. S. Thompson, L. P. Guler, E. D. Nelson, Y.-Q. Yu,
H. I. Kenttämaa. Mechanistic study of stereoselective gas-phase
reactions of phosphenium ions with cis- and trans-
1,2-diaminocyclohexanes. J. Org. Chem., 2002, 67, 5076; (t)
V. V. Mancel, N. Sellier. Stereochemical differentiation of cyclic glycols
by ion-molecule reactions in a quadrupole mass spectrometer using
dimethyl ether acetonitrile and 2-S-pyrrolidinemethanol. Rapid
Commun. Mass Spectrom. 2000, 14, 80; (u) C. Bure, N. Sellier,
D. Lesage, F. Fournier, J. C. Tabet. Ion/molecule reactions with
dimethyl ether and dimethyl-d6 ether: differentiation of four isomers
contained in patchouli essential oil. Rapid Commun. Mass Spectrom.
2000, 14, 872; (v) H. F. Wu, Y. J. Chuan. Isomer differentiation by
combining gas chromatography, selective self-ion/molecule reactions
and tandem mass spectrometry in an ion trap mass spectrometer.
Rapid Commun. Mass Spectrom. 2003, 17, 1030; (w) E. P. Burrows.
Dimethyl ether and dimethyl-d6 ether chemical ionization mass
spectrometry of polynuclear aromatic hydrocarbons. J. Mass
Spectrom. 1995 30, 312; (x) J. Somuramasami, P. Duan,
[2] (a) J. S. Brodbelt. Analytical applications of ion–molecule reactions.
Mass Spectrom. Rev. 1997 16, 91; (b) J. S. Brodbelt, C.-C. Liou,
T. Donovan. Selective adduct formation by dimethyl ether chemical
ionization in a quadrupole ion trap mass spectrometer and a
conventional ion source. Anal. Chem. 1991, 63, 1205; (c)
T. D. McCarley, J. S. Brodbelt. Structurally diagnostic ion-molecule
reactions
and
collisionally
activated
dissociation
of
1,4-benzodiazepines in a quadrupole ion trap mass spectrometer.
Anal. Chem. 1993, 65, 2380; (d) A. Colorado, J. S. Brodbelt. Class-
selective collisionally activated dissociation/ion–molecule reactions of
4-quinolone antibiotics. Anal. Chem. 1994, 66, 2330; (e) C.-C. Liu,
J. Isbell, H.-F. Wu, J. S. Brodbelt, R. A. Bartsch, J. C. Lee, J. L. Halman.
Structurally-selective gas-phase ion-molecule reactions of dibenzo-
16-crown-5 compounds. J. Mass Spectrom. 1995, 30, 572; (f)
R. G. Cooks, H. Chen, M. N. Eberlin, X. Zheng, W. A. Tao. Polar
acetalization and transacetalization in the gas phase: the Eberlin
reaction. Chem. Rew. 2006, 106, 188; (g) M. N. Eberlin. Structurally
diagnostic ion/molecule reactions: class and functional-group
identification by mass spectrometry. J. Mass Spectrom. 2006, 41, 141;
(h) M. A. Watkins, J. M. Price, B. E. Winger, H. I. Kenttämaa. Ion–
molecule reactions for mass spectrometric identification of functional
groups
in protonated
oxygen-containing
monofunctional
compounds. Anal. Chem. 2004, 76, 964; (i) K. M. Campbell,
M. A. Watkins, S. Li, M. N. Fiddler, B. Winger, H. I. Kenttämaa.
Functional group selective ion/molecule reactions: mass
spectrometric identification of the amido functionality in protonated
monofunctional compounds. J. Org. Chem., 2007, 72, 3159; (j)
J. Somuramasami, B. E. Winger, T. A. Gillespie, H. I. Kenttämaa.
Identification and counting of carbonyl and hydroxyl functionalities
in protonated bifunctional analytes by using solution derivatization
prior to mass spectrometric analysis via ion-molecule reactions. J. Am.
Soc. Mass Spectrom. 2010, 21, 773.
[3] M. S. B. Munson, F. H. Field. Chemical ionization mass spectrometry. I.
General introduction. J. Am. Chem. Soc. 1966, 88, 2621.
[4] A. G. Harrison. Chemical Ionization Mass Spectrometry. 2nd. CRC Pess:
Boca Raton, 1992.
[5] (a) M. Vairamani, U. A. Mirza, R. Srinivas. Unusual positive ion reagents
in chemical ionization mass spectrometry. Mass Spectrom. Rev. 1990,
9, 235; (b) S. Prabhakar, M. Vairamani. Acetone chemical ionization
mass spectrometry. Mass Spectrom. Rev. 1997, 16, 259–281.
[6] (a) K. L. Busch, G. L. Glish, S. A. McLuckey. Mass Spectrometry/Mass
Spectrometry: Techniques and Applications of Tandem Mass
Spectrometry. VCH publishers: New York, 1988; (b) R. A. Yost,
D. D. Fetterolf. Tandem mass spectrometry (MS/MS) instrumentation.
Mass Spectrom. Rev. 1983, 2, 1.
[7] R. E. March, J. F. J. Todd (Eds). Practical Aspects of Ion Trap Mass Spec-
trometry, Vols 1–3. CRC Press: Boca Raton, 1995.
[8] (a) K. Levsen, H. Schwarz. Collisional activation mass spectrometry: a
new probe for determining the structure of ions in the gas phase.
Angew. Chem. Int. Ed. 1976, 15, 509; (b) D. D. Fetterolf, R. A. Yost,
J. R. Eyler. The use of reactive collisions in tandem mass spectrometry
for the differentiation of isomeric structures. Org. Mass Spectrom.
1984, 19, 104.
[9] G. Giorgi, L. Salvini, F. Ponticelli. Gas phase reactivity of isomeric
arylglicosides towards amines.
A
chemical ionization mass
spectrometry and tandem mass spectrometry study. J. Am. Soc. Mass
Spectrom. 2004, 15, 244.
[10] C. A. Grob, G. Cseh. Die solvolyse von α-bromstyrolen Substitution
am ungesättigten trigonalen Kohlenstoffatom. Helv. Chim. Acta
1964, 47, 194.
[11] Y. Apeloig, W. Franke, Z. Rappoport, H. Schwarz, D. Stahl. Dissociative
ionization of aryl-substituted vinyl bromide in the gas phase:
experimental and computational evidence for the formation of
stable α-arylvinyl cations both by direct means and spontaneous
J. Mass Spectrom. 2015, 50, 693–702
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/jms