Please do not adjust margins
ChemComm
Page 4 of 6
COMMUNICATION
Journal Name
naphthalene nucleus shows a single ABM pattern of the arene
CH´s (rel. intensity 6). The 11B NMR signal of compound 17·pyr
was located at δ 2.7.
Conflicts of interest
There are no conflicts to declare.
DOI: 10.1039/D0CC05230B
Notes and references
1
a) D.J. Parks, R.E. von Spence and W.E. Piers, Angew. Chem.
Int. Ed. Engl., 1995, 34, 809; Angew. Chem., 1995, 107, 895;
b) D.J. Parks, W.E. Piers and G.P.A. Yap, Organometallics,
1998, 17, 5492; c) M. Hoshi, K. Shirakawa and M. Okimoto,
Tetrahedron Lett., 2007, 48, 8475; d) X-S. Tu, N-N. Zeng, R-Y.
Li, Y-Q. Zhao, D-Z. Xie, Q. Peng and X-C. Wang, Angew. Chem.
Int. Ed., 2018, 57, 15096; Angew. Chem. 2018, 130, 15316; e)
E.A. Patrick and W.E. Piers, Chem. Commun. 2020, 56, 841.
a) P. Spies, G. Erker, G. Kehr, K. Bergander, R. Fröhlich, S.
Grimme and D.W. Stephan, Chem. Commun. 2007, 5072; b)
G. Kehr, S. Schwendemann and G. Erker, Top. Curr. Chem.
2013, 332, 45.
2
3
a) Z. Lu, Z. Cheng, Z. Chen, L. Weng, Z.H. Li and H. Wang,
Angew. Chem. Int. Ed., 2011, 50, 12227; Angew. Chem. 2011,
123, 12435; b) H. Ye, Z. Lu, D. You, Z. Chen, Z.H. Li and H.
Wang, Angew. Chem. Int. Ed. 2012, 51, 12047; Angew. Chem.
2012, 124, 12213; c) Z. Lu, Y. Wang, J. Liu, Y-J. Lin, Z.H. Li and
H. Wang, Organometallics 2013, 32, 6753.
a) K. Samigullin, M. Bolte, H-W. Lerner and M. Wagner,
Organometallics, 2014, 33, 3564; b) L. Wang, K. Samigullin,
M. Wagner, A.C. McQuilken, T.H. Warren, C.G. Daniliuc, G.
Kehr and G. Erker, Chem. Eur. J., 2016, 22, 11015.
A-M. Fuller, D.L. Hughes, S.J. Lancaster and C.M. White,
Organometallics, 2010, 29, 2194.
J. Li, C.G. Daniliuc, G. Kehr and G. Erker, Angew. Chem. Int.
Ed., 2019, 58, 6737; Angew. Chem., 2019, 131, 6809.
J. Li, C.G. Daniliuc, C. Mück-Lichtenfeld, G. Kehr and G. Erker,
Angew. Chem. Int. Ed., 2019, 58, 15377; Angew. Chem.,
2019, 131, 15521.
Figure 5 Molecular structure of compound 17·pyr (thermal ellipsoids at 15 %
probability).
4
We adopted the methodology outlined by Repo, Wagner and
others4,9 for the preparation of the new borane FpXylBH2 that
contains the readily available 2,5-bis(trifluoromethyl)phenyl
substituent. The reagent was usually generated as the stabilized
dimethylsulfide adduct 6·SMe2. The compound turned out to be
a reactive hydroboration reagent. The acetylene hydroboration
reactions investigated in this study showed a remarkable
dependency on the variation of the bulky substituents at the
alkynes. The SiMe3 group in the substrates 11a and 11b
apparently supported an “anti-Markovnikov” like regioselective
cis-1,2-BH addition reaction13 that resulted in the hydride
addition to the α-position to the arene and, consequently,
brought the B(H)FpXyl function to the β-carbon. This
arrangement geometrically precluded a use of the remaining BH
functionality for internal attack on the remaining acetylene and
directed the system into an intermolecular pathway toward the
formation of the unique fully conjugated 14-membered
macrocyclic π-products 13.
The hydroboration reactions of the FpXylBH2 reagent with the
closely related tert-butylethynyl substituted substrates
proceeded with the opposite regioselectivity. We assume that
steric hinderance here was a sufficient force to overcome any
weak electronic preference and, consequently, the -B(H)FpXyl
functionality ended up at the α-carbon atom. This enabled the
system for an efficient subsequent internal hydroboration
reaction with the pendant alkynyl substituent to form the
products 15 and 17 with five or six-membered heterocyclic ring
formation. The new FpXylBH2 reagent has, thus, shown some
interesting initial reaction modes, giving rise to the formation of
some unusually composed boron containing heterocycles with
hopefully more to come.
5
6
7
8
9
(FpXyl)3B had previously been reported: R.J. Blagg, E.J.
Lawrence, K. Resner, V.S. Oganesyan, T.J. Herrington, A.E.
Ashley and G.G. Wildgoose, Dalton Trans., 2016, 45, 6023.
Synthesis scheme analogous to: a) A. Schnurr., K. Samigullin,
J.M. Breunig, M. Bolte, H-W. Lerner and M. Wagner,
Organometallics, 2011,30, 2838; b) K. Chernichenko, B.
Kótai, I. Pápai, V. Zhivonitko, M. Nieger, M. Leskelä and T.
Repo, Angew. Chem. Int. Ed., 2015, 54, 1749; Angew. Chem.,
2015, 127, 1769; c) J. Li, C.G. Daniliuc, G. Kehr and G. Erker,
Chem. Commun., 2018, 54, 12606.
10 a) G. Hesse and H. Witte, Angew. Chem., Int. Ed. Engl., 1963,
2, 617; b) J. Tanaka and J. C. Carter, Tetrahedron Lett., 1965,
6, 329; c) J. Casanova Jr., H. R. Kiefer, D. Kuwada and A. H.
Boulton, Tetrahedron Lett., 1965, 6, 703; d) H. Witte,
Tetrahedron Lett., 1965, 6, 1127; e) S. Bresadola, F. Rossetto
and G. Puosi, Tetrahedron Lett., 1965, 6, 4775; f) G. Hesse
and Witte, Liebigs Ann. Chem., 1965, 687, 1; g) P. I. Paetzold
and G. Stohr, Chem. Ber., 1968, 101, 2874; h) J. Casanova Jr.
and H. R. Kiefer, J. Org. Chem., 1969, 34, 2579.
11 B.R. Barnett, C.E. Moore, A.L. Rheingold and J.S. Figueroa,
Chem. Commun., 2015, 51, 541.
12 See for a comparison: R. Liedke, M. Harhausen, R. Fröhlich,
G. Kehr and G. Erker, Org. Lett., 2012, 14, 1448.
13 On the -silicon effect in carbobocation stabilization see e.g.
a) J.B. Lambert, G-T. Wang, R.B. Finzel, D.H. Teramura, J. Am.
Chem. Soc., 1987, 109, 25; b) M.J. Bausch and Y. Gong, J. Am.
Chem. Soc., 1994, 116, 5963.
14 The CCDC numbers of the structures in this paper are
2016810-2016815, 2026639 and 2024709.
Financial Support from the Deutsche Forschungsgemeinschaft
is gratefully acknowledged.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins