408 J. Phys. Chem. B, Vol. 101, No. 3, 1997
O¨ fner and Zaera
tion-desorption of the corresponding species. By using the
same model to calculate the ethylene surface concentration, and
reaction order values of 0.8 in hydrogen and 1.2 in weakly-
bound ethylene, as determined in this investigation, the rate for
(6) Beebe, T. P., Jr.; Yates, J. T., Jr. J. Am. Chem. Soc. 1986, 108,
63.
6
(
(
(
7) Zaera, F. J. Phys. Chem. 1990, 94, 5090.
8) Zaera, F. J. Phys. Chem. 1990, 94, 8350.
9) King, D. A.; Wells, M. G. Surf. Sci. 1972, 29, 454.
ethane formation (RC H ) comes out to be
2
6
(10) Liu, J.; Xu, M.; Nordmeyer, T.; Zaera, F. J. Phys. Chem. 1995,
9, 6167.
(11) Zaera, F.; Liu, J.; Xu, M. J. Chem. Phys., in press.
(12) Kesmodel, L. L.; Dubois, L. H.; Somorjai, G. A. Chem. Phys. Lett.
1978, 56, 267.
9
1/2
1/2 0.8
1.2
[
KH2 PH2 ] [K
P
]
C H C H
0
H
.8 1.2
2
4
2
4
R
) k Θ Θ ) k2
C H
2 4
C H
2
2
6
1/2
1/2
2
[
1 + KH2 PH2 + K
P
]
C H C H
2
4
2
4
(
13) Davis, S. M.; Zaera, F.; Gordon, B.; Somorjai, G. A. J. Catal. 1985,
2, 240.
(13)
9
(
14) Griffiths, K.; Lennard, W. N.; Mitchell, I. V.; Norton, P. R.; Pirug,
Assuming for the catalytic case that (1) the surface concentra-
tion of ethylidyne stays near saturation and does not change
significantly under typical experimental conditions, (2) the
ethylene surface concentration also stays near saturation, and
G.; Bonzel, H. P. Surf. Sci. 1993, 284, L389.
(15) Selected Mass Spectral Data; Thermodynamics Research Center
Hydrocarbon Project (Standard), TRC, Texas Engineering Experimental
Station, The Texas A&M University System, 1983.
(16) Moshin, S. B.; Trenary, M.; Robota, H. J. Chem. Phys. Lett. 1989,
(
3) the product of the equilibrium constant times the partial
1
54, 511.
pressure for ethylene is much larger than both that for hydrogen
and unity, eq 13 can be approximated by eq 14:
(17) Ogle, K. M.; Creighton, J. R.; Akhter, S.; White, J. M. Surf. Sci.
1986, 169, 246.
(18) Zaera, F.; Fischer, D. A.; Carr, R. G.; Kollin, E. B.; Gland, J. L. In
1
H2
/2
1/2 0.8
1.2
0.4
Electrochemical Surface Science: Molecular Phenomena at Electrode
Surfaces; Soriaga, M. P., Ed.; ACS Symposium Series Vol. 378; American
Chemical Society: Washington, DC, 1988; pp 131-140.
[K
P
] [K
P
]
P
H2
H2
C H C H
2
4
2
4
R
) k2
∝
(14)
C H
2
6
2
0.8
[
K
P
]
P
C H
2
C H C H
(19) Erley, W.; Li, Y.; Land, D. P.; Hemminger, J. C. Surf. Sci. 1994,
2
4
2
4
4
1
03, 177.
(
(
(
(
20) Madey, T. E. Surf. Sci. 1972, 33, 355.
21) Kisluik, P. J. Phys. Chem. Solids 1957, 3, 95.
22) Christmann, K.; Ertl, G.; Pignet, T. Surf. Sci. 1976, 54, 365.
23) Kubota, J.; Ichihara, S.; Kondo, J. N.; Domen, K.; Hirose, C.
Experimental values for the reaction orders under catalytic
conditions for the hydrogenation of ethylene in hydrogen and
ethylene range from approximately 0.5 to 1.3 and -0.5 to 0,
respectively,2
,4,50
close to those in the equation above (0.4 and
Langmuir 1996, 12, 1926.
-0.8).
(24) Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. A. J. Am. Chem.
Soc. 1996, 118, 2942.
(25) Zaera, F.; Janssens, T. V. W.; O¨ fner, H. Surf. Sci., in press.
(26) Janssens, T. V. W.; Zaera, F. Surf. Sci. 1995, 344, 77.
(27) Janssens, T. V. W.; Zaera, F.; Stone, D.; Hemminger, J. C. To be
5
. Conclusions
The kinetics for the hydrogenation of ethylene over Pt(111)
was studied isothermally and under vacuum. Ethylene adsorp-
tion was found to be precursor-mediated at low coverages and
Langmuirian near saturation, at which point a certain population
of weakly-adsorbed ethylene can be maintained on the surface
by exposure to a constant flux of ethylene molecules. The
presence of hydrogen on the surface increases the amount of
this weakly-adsorbed ethylene, a species that was shown to be
essential for the hydrogenation process. The kinetic orders of
the hydrogenation reaction were determined to be 1.2 ( 0.3
and 0.8 ( 0.2 with respect to the weakly-adsorbed ethylene
and hydrogen surface coverages, respectively, and an activation
energy of 6 ( 1 kcal/mol for the hydrogenation of ethylene to
ethane was measured under the conditions of these experiments.
The presence of ethylidyne does not influence the hydrogenation
reaction in any other way than by blocking surface sites. All
this helps understand the kinetic behavior of olefin hydrogena-
tion processes under catalytic conditions.
published.
(28) Godbey, D.; Zaera, F.; Yates, R.; Somorjai, G. A. Surf. Sci. 1986,
67, 150.
29) Hugenschmidt, M. B.; Dolle, P.; Jupille, J.; Cassuto, A. J. Vac.
Sci. Technol. A 1989, 7, 3312.
30) Cassuto, A.; Mane, M.; Hugenschmidt, M.; Dolle, P.; Jupille, J.
1
(
(
Surf. Sci. 1990, 237, 63.
(31) Cassuto, A.; Mane, M.; Jupille, J. Surf. Sci. 1991, 249, 8.
(
32) Windham, R. G.; Bartram, M. E.; Koel, B. E. J. Phys. Chem. 1988,
2, 2862.
33) D o¨ ll, R.; Gerken, C. A.; Van Hove, M. A.; Somorjai, G. A. J. Am.
Chem. Soc., submitted.
34) Yu, R.; Gustafsson, T. Surf. Sci. 1987, 182, L234.
(35) Masson, F.; Sass, C. S.; Grizzi, O.; Rabalais, J. W. Surf. Sci. 1989,
221, 299.
36) Davis, S. M.; Zaera, F.; Somorjai, G. A. J. Catal. 1982, 77, 439.
9
(
(
(
(37) Abon, M.; Billy, J.; Bertolini, J. C. Surf. Sci. 1986, 171, L387.
(38) Mitchell, I. V.; Lennard, W. N.; Griffiths, K.; Massuomi, G. R.;
Huppertz, J. W. Surf. Sci. 1991, 256, L598.
(39) Bartra, I. P.; Barker, J. A.; Auerbach, J. D. J. Vac. Sci. Technol.
1984, 2, 943.
Acknowledgment. Funding for this research was provided
by grants from the National Science Foundation (CHE-9530191
and CTS-9525761) and the Department of Energy, Basic Energy
Sciences (DE-FG03-94ER14472). H. O¨ . also gratefully ac-
knowledges financial support from the Welch Foundation.
Finally, we want to thank T.V.W. Janssens for helpful discus-
sions.
(40) Christmann, K. Surf. Sci. Rep. 1988, 9, 1.
(41) Bar o´ , A. M.; Ibach, H. J. Chem. Phys. 1979, 71, 4812.
(42) Berlowitz, P.; Megiris, C.; Butt, J. B.; Kung, H. H. Langmuir 1985,
1
, 206.
(
(
(
43) Steininger, H.; Ibach, H.; Lehwald, S. Surf. Sci. 1982, 117, 685.
44) Zaera, F. Surf. Sci. 1989, 219, 453.
45) Land, T. A.; Michely, T.; Behm, R. J.; Hemminger, J. C.; Comsa,
G. J. Chem. Phys. 1992, 97, 6774.
46) Starke, U.; Barbieri, A.; Materer, N.; Van Hove, M. A.; Somorjai,
G. A. Surf. Sci. 1993, 286, 1.
47) Cremer, P.; Stanners, C.; Niemantsverdriet, J. W.; Shen, Y. R.;
Somorjai, G. Surf. Sci. 1995, 328, 111.
48) Gland, J. L.; Fischer, D. A.; Shen, S.; Zaera, F. J. Am. Chem. Soc.
990, 112, 5695.
49) Yamada, T.; Zhai, R. S.; Iwasawa, Y.; Tamaru, K. Bull. Chem.
(
References and Notes
(
(
(
1) Bond, G. C. Catalysis by Metals; Academic Press: London, 1962.
2) Horiuti, J.; Miyahara, K. Hydrogenation of Ethylene on Metallic
(
Catalysts; Report NSRDS-NBC No. 13; National Bureau of Standards;
Washington, DC, 1968.
1
(
(
(
(
3) Zaera, F. Langmuir 1996, 12, 88.
4) Zaera, F.; Somorjai, G. A. J. Am. Chem. Soc. 1984, 106, 2288.
5) Wieckowski, A.; Rosasco, S. D.; Salaita, G. N.; Hubbard, A.; Bent,
Soc. Jpn. 1989, 62, 267.
(50) Zaera, F.; Somorjai, G. A. In Hydrogen Effects in Catalysis:
Fundamentals and Practical Applications; Pa a´ l, Z., Menon, P. G., Eds.;
Marcel Dekker: New York, 1988; pp 425-447.
B. E.; Zaera, F.; Godbey, D.; Somorjai, G. A. J. Am. Chem. Soc. 1985,
07, 5910.
1