COKE IN ACETYLENE HYDROGENATION ON Pd/ꢀ-Al2O3
57
The design of the TPO reactor had some important fea-
tures that proved to work very well in the experiments. First,
the extra reactor with the heated Pt foil was necessary to be
able to detect the amount of coke in the desorption peak.
Another approach would be to try to determine the com-
position directly, either in the gas phase during the TPO
(33) or by extracting the soluble parts of the coke (11). In
both cases a GC-MS analysis is desirable because of the
very complex composition. In this work we have tried to
determine only the quantity and the H/C ratio, which can
be difficult by the methods discussed above. A further fea-
ture of the experimental equipment was the possibility to
add oxygen after the catalyst bed and burn everything that
desorbs during the TPD experiment. The experiment was
fast to perform and evaluate, and gave accurate results.
6. McGown, W. T., Kemball, C., and Whan, D. A., J. Catal. 51, 173
(1978).
7. Cider, L., and Scho¨o¨n, N.-H., Ind. Eng. Chem. Res. 30, 1437 (1991).
8. God´ınez, C., Canes, A. L., and Villora, G., Chem. Eng. Proc. 34, 459
(1995).
9. Duca, D., Frustreri, F., Parmaliana, A., and Deganello, G., Appl. Catal.
146, 269 (1996).
10. Yayun, L., Jing, Z., and Xueru, M., in “Proceedings, Joint Meeting of
Chemical Engineering, Chemical Industry and Engineering Society
of China and American Institute of Chemical Engineers, Beijing,”
Vol. 2, p. 688. 1982.
11. Boitiaux, J. P., Cosyns, J., Derrien, M., and Le´ger, G., Hydrocarbon
Process. 64, 51 (1985).
12. LeViness, S., Nair, V., Weiss, A. H., Schay, Z., and Guczi, L., J. Mol.
Catal. 25, 131 (1984).
13. Weiss, A. H., Gamphir, B. S., LaPierre, R. B., and Bell, W. K., Ind.
Eng. Chem. Proc. Des. Dev. 16, 352 (1977).
14. Asplund, S., J. Catal. 158, 267 (1996).
15. Asplund, S., Fornell, C., Holmgren, A., and Irandoust, S., Catal. Today
24, 181 (1995).
16. Barbier, J., Churin, E., Parera, J. M., and Riviere, J., React. Kinet. Catal.
Lett. 29, 323 (1985).
17. Fung, S. C., and Querini, C. A., J. Catal. 138, 240 (1992).
18. Querini, C. A., and Fung, S. C., Appl. Catal. A 117, 53 (1994).
CONCLUSIONS
We found that the total amount of coke was of minor im-
portance in explaining the undesired increased selectivity
to ethane formation. Neither did the TPO analyses reveal 19. Larsson, M., Hulte´n, M., Blekkan, E. A., and Andersson, B., J. Catal.
164, 44 (1996).
any evidence that the characteristics of the coke are impor-
tant for ethane selectivity. Instead, the surface coverage of
hydrogen has a crucial role in the selectivity phenomenon.
20. Gandman, Z. E., Aerov, M. E., Men’shchikov, V. A., and Getmantsev,
V. S., Int. Chem. Eng. 15, 183 (1975).
21. Larsson, M., Jansson, J., and Asplund, S., J. Catal. 162, 365 (1996).
A low surface coverage leads to a larger increase in ethane
selectivity than does a higher surface coverage of hydro-
gen. More “harmful” coke is formed, but this coke cannot
be identified in the TPO analyses. The coke formation rate
is also increased when more hydrogen is present on the sur-
face, at least at relatively low hydrogen pressures. The role
of carbon monoxide is to reduce the surface coverage of hy-
drogen, leading to higher ethane selectivity and diminished
coke formation.
22. Guczi, L., LaPierre, R. B., Weiss, A. H., and Biron, E., J. Catal. 60, 83
(1979).
23. Margitfalvi, J., Guczi, L., and Weiss, A. H., React. Kinet. Catal. Lett.
15, 475 (1980).
24. Sermon, P. A., Vong, M. S. W., and Martin-Luengo, M. A., Stud. Surf.
Sci. Catal. 88, 319 (1994).
25. Augustine, S. M., Alameddin, G. N., and Sachtler, W., J. Catal. 115,
217 (1989).
26. Butt, J. B., and Petersen, E. E., “Activation, Deactivation, and Poison-
ing of Catalysts,” Academic Press, San Diego, 1988.
27. Cider, L., and Scho¨o¨n, N.-H., Appl. Catal. 68, 207 (1991).
28. Liu, Y., Yang, J., and Yang, G., in “Proceedings, Int. Conf. Pet. Refin.
Petrochem. Process.” (X. Hou, Ed.), p. 362. Int. Acad. Publ., Beijing,
1991.
ACKNOWLEDGMENT
Support from the Swedish Research Council for Engineering Sciences
(TFR) is gratefully acknowledged.
29. Pieck, C. L., Verderone, R. J., Jablonski, E. L., and Parera, J. M., Appl.
Catal. 55, 1 (1989).
30. Sa´rka´ny, A., Lieske, H., Szila´gyi, T., and To´th, L., in “Proceedings, 8th
International Congress on Catalysis, Berlin, 1984,” Vol. 2, p. II613.
Dechema, Frankfurt-am-Main, 1984.
REFERENCES
1. Derrien, M. L., Stud. Surf. Sci. Catal. 27, 613 (1986).
2. Battiston, G. C., Dalloro, L., and Tauszik, G. R., Appl. Catal. 2, 1
(1982).
3. Sa´rka´ny, A., Guczi, L., and Weiss, A. H., Appl. Catal. 10, 369 (1984).
4. Bos, A. N. R., and Westerterp, K. R., Chem. Eng. Proc. 32, 1 (1993).
5. Bos, A. N. R., Bootsma, E. S., Foeth, F., Sleyster, W. J., and Westerterp,
K. R., Chem. Eng. Proc. 32, 53 (1993).
31. Duprez, D., Hadj-Aissa, M., and Barbier, J., Appl. Catal. 49, 67 (1989).
32. Basso, T. C., Zhang, Z., and Sachtler, W. M. H., Appl. Catal. 79, 227
(1991).
˚
33. Wrammerfors, A., and Andersson, B., J. Catal. 147, 82 (1994).
34. Augustine, S. M., Alameddin, G. N., and Sachtler, W. M. H., J. Catal.
115, 217 (1989).
35. Blyholder, G., and Eyring, H., J. Phys. Chem. 61, 682 (1957).