402
L. Yuliati et al. / Journal of Catalysis 257 (2008) 396–402
catalyst can be efficiently photoexcited, as suggested by the large
absorption band. The activity should be high. But the presence of
photoexcited electrons and holes on the various surface sites on
gallium oxide particles will diminish the reaction selectivity for
NOCM and enhance that for other reactions, such as consecutive
coupling, dehydrogenation, and coke/carbon formation.
The medium-loading samples, such as Ga(1)/SiO2, were found
to contain various photocatalytically active species, such as Ga(Td)-
rich gallium oxide small nanoparticles or clusters on silica. Thus,
some types of photoactive sites, such as coordinatively unsaturated
surface sites, would reduce the selectivity.
[2] L. Yuliati, M. Tsubota, A. Satsuma, H. Itoh, H. Yoshida, J. Catal. 238 (2006) 214.
[3] H. Yoshida, M.G. Chaskar, Y. Kato, T. Hattori, J. Photochem. Photobiol. A Chem.
160 (2003) 47.
[4] L. Yuliati, T. Hattori, H. Yoshida, Phys. Chem. Chem. Phys. 7 (2005) 195.
[5] H. Yoshida, N. Matsushita, Y. Kato, T. Hattori, Phys. Chem. Chem. Phys. 4 (2002)
2459.
[6] Y. Kato, H. Yoshida, T. Hattori, Chem. Commun. (1998) 2389.
[7] L. Yuliati, T. Hamajima, T. Hattori, H. Yoshida, Chem. Commun. (2005) 4824.
[8] G. Caeiro, R.H. Carvalho, X. Wang, M.A.N.D.A. Lemos, F. Lemos, M. Guisnet, F.R.
Ribeiro, J. Mol. Catal. A 255 (2006) 131.
[9] R.L. van Mao, J. Yao, L.A. Dufresne, R. Carli, Catal. Today 31 (1996) 247.
[10] P. Mériaudeau, C. Naccache, Catal. Today 31 (1996) 265.
[11] A. Raj, J.S. Reddy, R. Kumar, J. Catal. 138 (1992) 518.
[12] Y.K. Park, K.Y. Park, S.I. Woo, Catal. Lett. 26 (1994) 169.
[13] A. Corma, F. LLopis, P. Viruela, C. Zicovich-Wilson, J. Am. Chem. Soc. 116 (1994)
134.
4. Conclusions
Unsupported and silica-supported gallium oxide were found to
promote the photocatalytic NOCM to produce ethane and hydrogen
on photoirradiation at around room temperature. Because the con-
version exceeded the equilibrium at 314 K, it is obvious that these
gallium oxide photocatalysts can selectively promote the forward
reaction of the photocatalytic NOCM. This is the advantage of the
photocatalytic reaction.
[14] E. Lalik, X. Liu, J. Klinowski, J. Phys. Chem. 96 (1992) 805.
[15] V.R. Choudhary, A.K. Kinage, Zeolites 15 (1995) 732.
[16] M. Kang, C.-T. Lee, J. Mol. Catal. A 150 (1999) 213.
[17] E. Kikuchi, K. Yogo, Catal. Today 22 (1994) 73.
[18] Y. Li, J.N. Armor, J. Catal. 145 (1994) 1.
[19] J.N. Armor, Catal. Today 31 (1996) 191.
[20] K. Shimizu, M. Takamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshi-
da, T. Hattori, J. Phys. Chem. B 103 (1999) 1542.
The unsupported gallium oxide as a semiconductor photocata-
lyst exhibited greater activity than the silica-supported gallium ox-
ide. On the other hand, the highly dispersed tetrahedral species as
the quantum photocatalyst on the silica-supported gallium oxide
sample of low Ga loading (e.g., 0.1 mol%) was responsible for the
high reaction selectivity. Future studies are expected to improve
the selectivity of the unsupported gallium oxide photocatalyst and
to design more active supported gallium oxide photocatalysts.
[21] A. Satsuma, Y. Segawa, H. Yoshida, T. Hattori, Appl. Catal. A 264 (2004) 229.
[22] A. Kudo, I. Mikami, J. Chem. Soc. Faraday Trans. 94 (1998) 2929.
[23] T. Yanagida, Y. Sakata, H. Imamura, Chem. Lett. 33 (2004) 726.
[24] Y. Hou, X. Wang, L. Wu, Z. Ding, X. Fu, Environ. Sci. Technol. 40 (2006) 5799.
[25] Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, X. Fu, J. Catal. 250 (2007) 12.
[26] L. Yuliati, H. Itoh, H. Yoshida, Chem. Phys. Lett. 452 (2008) 178.
[27] H. Yoshida, C. Murata, T. Hattori, J. Catal. 194 (2000) 364.
[28] M. Nomura, A. Koyama, KEK Report 89-16 (1989) 1.
[29] K. Nishi, K. Shimizu, M. Takamatsu, H. Yoshida, A. Satsuma, T. Tanaka, S. Yoshi-
da, T. Hattori, J. Phys. Chem. B 102 (1998) 10190.
[30] Y. Kato, K. Shimizu, N. Matsushita, T. Yoshida, H. Yoshida, A. Satsuma, T. Hattori,
Phys. Chem. Chem. Phys. 3 (2001) 1925.
Acknowledgments
[31] E.A. Gonzales, P.V. Jasen, A. Juan, S.E. Collins, M.A. Baltanás, A.L. Bonivardi, Surf.
Sci. 575 (2005) 171.
[32] B. Xu, B. Zheng, W. Hua, Y. Yue, Z. Gao, J. Catal. 239 (2006) 470.
[33] E.A. Pidko, V.B. Kazansky, E.J.M. Hensen, R.A. van Santen, J. Catal. 240 (2006)
73.
[34] G. Sinha, D. Ganguli, S. Chaudhuri, J. Phys. Condens. Matter 18 (2006) 11167.
[35] H. Yoshida, Curr. Opin. Solid Mater. Sci. 7 (2003) 435.
[36] H. Yoshida, Catal. Surv. Asia 9 (2005) 1.
The X-ray absorption experiments at the Ga K -edge were per-
formed under the approval of the Photon Factory Program Advi-
sory Committee (proposal 2003G248). This work was partially sup-
ported by a Grant-in-Aid for Young Scientists (A) (16686045) and
a Grant-in-Aid for Scientific Research on Priority Areas (19028023,
“Chemistry of Concerto Catalysis”) from the Japanese Ministry of
Education, Culture, Sports, Science and Technology (to H.Y.). The
authors thank Katsuya Shimura for preparing the unsupported gal-
lium oxide and Naoki Hirabayashi for carrying out the preliminary
photoluminescence study.
[37] M. Anpo, M. Che, Adv. Catal. 44 (2000) 119.
[38] Y. Kato, H. Yoshida, T. Hattori, Phys. Chem. Chem. Phys. 2 (2000) 4231.
[39] X. Xiang, C.-B. Cao, H.-S. Zhu, J. Cryst. Growth 279 (2005) 122.
[40] K. Shimizu, M. Takamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Hattori, Chem.
Commun. (1996) 1827.
References
[41] S. Geller, J. Chem. Phys. 33 (1960) 676.
[42] S. Yoshida, T. Tanaka, in: Y. Iwasawa (Ed.), X-ray Absorption Fine Structure for
Catalysts and Surfaces, World Scientific, Singapore, 1996, p. 304.
[1] L. Yuliati, H. Itoh, H. Yoshida, Stud. Surf. Sci. Catal. 172 (2007) 457.