ronmental Sciences – VII. Proceedings of the 7th International
Workshop on QSAR in Environmental Sciences, Elsinore, Den-
mark. SETAC Press: Pensacola, FL, 1997, pp. 381–397.
15. Fayolle, P., Picque, D., Perret, B., Latrille, E. and Corrieu, G.,
Determination of major compounds of alcoholic fermentation
by middle-infrared spectroscopy: study of temperature effects
and calibration methods, App. Spectrosc., 1996, 50(10), 1325–
1330.
38. Williams, P.C., Preston, K.R., Norris, K.H. and Starkey, P.M.,
Determination of amino acids in wheat and barley by near-infra-
red reflectance spectroscopy, J. Food Sci., 1984, 49(1), 17–20.
39. Wold, S., Antii, H., Lindgren, F. and Öhman, J., Orthogonal
signal correction of near-infrared spectra, Chem. Intell. Lab.
Sys., 1998, 44(1), 175–185.
40. Wold, S. Personal communication on optimistic cross validation
results with OSC. June 2002.
16. Fearn, T., On orthogonal signal correction, Chem. Intell. Lab.
Sys., 2000, 50(1), 47–52.
17. Fernández-Pierna, J.A., Massart, D.L., Noord, O.E. and Ricoux,
Ph., Direct orthogonalization: some case studies, Chem. Intell.
Lab. Sys., 2001, 55(1), 101–108.
(Manuscript accepted for publication February 2003)
18. Fox, G.P., Onley-Watson, K. and Osman, A., Multiple linear
regression calibrations for barley and malt protein based on the
spectra of hordein. J. Inst. Brew., 2002, 108(2), 155–159.
19. Geladi, P., MacDougall, D. and Martens, H., Linearization and
scatter-correction for near-infrared reflectance spectra of meat,
Appl. Spectrosc., 1985, 39(3), 491–500.
3VXLSKSREPꢀ7MKREPꢀꢀ
'SVVIGXMSRꢀ%PKSVMXLQꢀ
20. Goicoechea, H.C. and Olivieri, A.C., A comparison of orthogo-
nal signal correction and net analyte preprocessing methods.
Theoretical and experimental study. Chem. Intell. Lab. Sys.,
2001, 56(2), 73–81.
21. Graybill, F.A., Matrices with applications in statistics, 2nd ed.,
Kimmel, J., Sipes, D., and Greenblatt, J., Eds. Wadsworth Pub-
lishing Company: Pacific Grove, CA, 1983, p. 114.
22. Hagen, W. and Schwarz, H., Determination of fermentability
(final attenuation) of wort. J. Inst. Brew., 1999, 105(2), 73–74.
23. Halsey, S.H., Near infrared reflectance analysis of whole hop
cones. J. Inst. Brew., 1988, 93(5), 399–404.
24. Halsey, S.H., The application of transmission near infrared
spectroscopy to the analysis of worts. J. Inst. Brew., 1986,
92(4), 387–393.
25. Höskuldsson, A., PLS regression methods, J. Chemometrics,
1998, 2, 211–228.
26. Kourti, T. and MacGreggor, J.F., Process analysis, monitoring
and diagnosis, using multivariate projection methods, Chem. In-
tell. Lab. Sys., 1995, 28(1), 3–21.
27. Martens, H. and Naes, T., Multivariate Calibration. John Wiley
& Sons: New York, 1998, pp. 248–250.
28. Martens, H. and Naes, T., Multivariate Calibration. John Wiley
& Sons: New York, 1998, pp. 314–316.
29. Ratcliffe, M. and Panozzo, J.F., The application of near infrared
spectroscopy to evaluate malting quality, J. Inst. Brew., 1999,
105(2), 85–88.
1. Assume X0 and Y0 represent mean centered and scaled
to unit variance data matrices of the NIR spectra and
fermentability measures, respectively. Note X0 and Y0
arranged such that the spectra and fermentability re-
sults for one sample are placed row-wise, and the num-
ber of rows corresponds to the number of samples in
calibration set.
2. Let a = 1.
3. Let Xosc,a–1 = X0 .
4. Let tstart be the score vector associated with the major
eigenvector of Xosc,a–1
.
5. Project tstart into the orthogonal complement of the
column space of Y , L {Y0}. This can be accom-
0
plished by tnew = [I – Y (Yt Y0)–1Yt ]tstart
.
0
0
0
6. Determine a least squares solution for wosc,a , i.e.
Xosc,a–1 osc,a = tnew
The solution involves the Moore-Penrose generalized
w
.
inverse of Xosc,a–1 and is given as wosc,a = X–osc,a–1 tnew
7. Calculate tosc,a = Xosc,a–1 wosc,a
.
.
8. Check for convergence such that
30. Savitzky, A. and Golay, M.J.E., Smoothing and differentiation
by simplified least squares procedures, Anal. Chem., 1964,
36(8), 1627–1632.
31. Sjöholm, K., Tenhunen, J., Tammisola, J., Pietilä, K. and Home,
S., Determination of fermentability and extract content of in-
dustrial worts by NIR, J. Am. Soc. Brew. Chem., 1996, 54(3),
135–140.
tosc,a - tnew
< 10
6
.
tosc,a
If convergence is not attained, let tstart = tosc,a and go
back to step 3; otherwise, proceed to step 9.
32. Sjöholm, K., Tenhunen, J., Home, S. and Pietilä, K., Wort analy-
sis by near infrared spectroscopy, Proceedings of the European
Brewing Convention Congress, Oslo, IRL Press: Oxford, 1993,
517–524.
33. Svensson, O., Kourti, T. and MacGregor, J.F., An investigation
of orthogonal signal correction algorithms and their characteris-
tics, J. Chemometrics, 2002, 16(4), 176–188.
34. Tenhunen, J., Sjöholm, K., Pietilä, K. and Home, S., Determina-
tion of fermentable sugars and nitrogenous compounds in wort
by near- and mid-infrared spectroscopy, J. Inst. Brew., 1994,
100(1), 11–15.
9. Compute loading vector posc,a using the following
ttosc,a Xosc,a
(ttosc,a tosc,a
1
pt
=
.
osc,a
)
10. Subtract signal correction from Xosc,a–1 to give Xosc,a
osc,a–1 – tosc,a ptosc,a
=
X
.
11. Let a = a + 1 and continue to extract as many compo-
nents as desired. Go back to step 3.
35. Tracy, N.D., Young, J.C. and Mason, R., Multivariate control
charts for individual observations, J. of Qual. Tech., 1992,
24(2), 88–95.
36. Trygg, J., O2-PLS for qualitative and quantitative analysis in
multivariate calibration, J. Chemometrics, 2002, 16(6), 283–293.
37. Westerhuis, J.A., de Jong, S. and Smilde, A.K., Direct orthogo-
nal signal correction, Chem. Intell. Lab. Sys., 2001, 56(1), 13–25.
12. Once the desired number of components are extracted
for signal correction, use Xosc,A for the PLS algorithm.
X
osc,A can be determined as
A
Xosc,A = X -
t
osc,a pt
.
osc,a
Ê
0
a
1