B. Zhong et al. / Tetrahedron Letters 47 (2006) 2161–2164
2163
Heterocycles 1992, 33, 973; (d) Nedolya, N. A.; Trofimov,
B. A.; Senning, A. Sulfur Rep. 1996, 17, 183; (e) Trofimov,
B. A. J. Heterocycl. Chem. 1999, 36, 1469; (f) Brandsma,
L.; Nedolya, N. A.; Tarasova, O. A.; Trofimov, B. A.
Chem. Heterocycl. Compd. 2000, 36, 1241; (g) Sommen, G.
Synlett 2004, 7, 1323–1324.
. (a) Edman, P. Arch. Biochem. 1949, 22, 475; (b) Cabant-
chik, Z. I.; Rothstein, A. J. Membr. Biol. 1974, 15, 227; (c)
Podhradsky, D.; Oravec, P.; Antalik, M.; Kristian, P.
Collect. Czech. Chem. Commun. 1994, 59, 213.
Cl
N
S
N
CN
NCS
AgSCN
AgSCN
N
1
1a
17
11b
2
3
100
. Recent reviews on chemoprevention of cancers by isothio-
cyanates: (a) Hecht, S. S. Adv. Exp. Med. Biol. 1996, 401,
8
0
0
0
0
0
1
; (b) Hecht, S. S. J. Nutr. 1999, 129, 768S; (c) Hecht, S. S.
Starting material 11a
Intermediate 17
Product 11b
6
4
2
Drug Metab. Rev. 2000, 32, 395; (d) Chung, F.-L. Exp.
Lung Res. 2001, 27, 319; (e) Smith, T. J. Expert Opin.
Invest. Drugs 2001, 10, 2167; (f) Conaway, C. C.; Yang,
Y.-M.; Chung, F.-L. Curr. Drug Metab. 2002, 3, 233; (g)
Thornalley, P. J. Anti-Cancer Drugs 2002, 13, 331; (h)
Watanabe, M.; Ohata, M.; Hayakawa, S.; Isemura, M.;
Kumazawa, S.; Nakayama, T.; Furugori, M.; Kinae, N.
Phytochemistry 2003, 62, 733–739; (i) Solowiej, E.; Kas-
przycka-Guttman, T.; Fiedor, P.; Rowinski, W. Acta Pol.
Pharm. 2003, 60, 97–100; (j) Visanji, J. M.; Duthie, S. J.;
Pirie, L.; Thompson, D. G.; Padfield, P. J. J. Nutr. 2004,
1
3
5
7
9
11
13
15
-20
Time (hr)
Figure 1. Reaction of 2-methyl-4-chloroquinoline with AgSCN.
1
34, 3121–3126.
4
. (a) Drobnica, L.; Kristian, P.; Augustin, J. In The
Chemistry of Cyanates and their Thio Derivatives; Patai,
S., Ed.; John Wiley & Sons: New York, 1977; Vol. 2, pp
In summary, we have described a novel and practical
approach to the construction of 4-quinolyl isothiocyanates
by reacting 4-chloroquinolines and silver thiocyanate in
refluxing toluene. A stepwise kinetics was illustrated.
The protocol provides a simple and efficient access to
1
5
013–1062; (b) Molina, P.; Arques, A. A. Synthesis 1982,
96; (c) Mazagova, D.; Sabolova, D.; Kristian, P.; Imrich,
J.; Antalik, M.; Podhradsky, D. Collect. Czech. Chem.
Commun. 1994, 59, 203; (d) Adam, W.; Bargon, R. M.;
Bosio, S. G.; Schenk, W. A.; Stalke, D. J. Org. Chem.
4
-quinolyl isothiocyanates in quantitative yield and
excellent purity.
2
002, 67, 7037; (e) Le Count, D. J.; Dewsbury, D. J.;
Grundy, W. Synthesis 1977, 582; (f) Hansen, E. T.;
Petersen, H. J. Synth. Commun. 1984, 14, 537.
. L’abbe, G. Synthesis 1987, 525.
5
6
7
Acknowledgements
. Knott, E. B. J. Chem. Soc. 1956, 1644.
. Avetisyan, A. A.; Aleksanyan, I. L.; Ambartsumyan, L. P.
Russ. J. Org. Chem. (Translation of Zhurnal Organicheskoi
Khimii) 2004, 40, 407–408.
The authors gratefully thank Mr. James M. Gilliam for
the collection of HRMS data, Mr. Darrell S. Coleman
for the gift of compound 16a, Ms. Kathryn Lawrence
and Mr. Thomas J. Mitchell for the assistance in FTIR
experiments, and Dr. Robert C. Anderson for many use-
ful discussions.
8
. (a) Kristian, P. Chem. Zvesti 1961, 15, 164; (b) Kristian, P.
Chem. Zvesti 1969, 23, 371; (c) De Leenheer, A.; Sinshei-
mer, J. E.; Burckhalter, J. H. J. Pharm. Sci. 1972, 61, 273;
(d) Vlassa, M.; Kezdi, M. J. Prakt. Chem. 1985, 327,
1
010.
9
. The rapid stirring was crucial for the success of the
reaction; otherwise, the reaction either progressed very
slowly or completely ceased. A mixture of 4-chloroquino-
line and silver thiocyanate in anhydrous toluene was
stirred at 110 °C for 12 h. The hot reaction mixture was
filtered and washed three times with chloroform. The
filtrate was concentrated under vacuum to afford the 4-
quinolinyl isothiocyanate as an off-white solid. We thank a
reviewer for the suggestion of using regular toluene.
Reactions 1, 5, 7 and 11 were carried out in anhydrous
toluene and regular toluene side by side. No obvious
differences were noted in yields and proton NMR spectra
between the two sets of reactions.
Supplementary data
General experimental procedure and spectroscopic data
1
13
(
H NMR, C NMR, HRMS, FTIR, and melting
point) for all products and intermediate 17 are available.
References and notes
. A comprehensive review on NCS chemistry: Drobnica, L.;
Kristian, P.; Augustin, J. In The Chemistry of Cyanates
and their Thio Derivatives; Patai, S., Ed.; John Wiley &
Sons: New York, 1977; Vol. 2, pp 1003–1221; Recent
reviews on isothiocyanates as synthetic intermediates: (a)
Sharma, S. Sulfur Rep. 1989, 8, 327; (b) Mukerjee, A. K.;
Ashare, R. Chem. Rev. 1991, 91, 1; (c) Avalos, M.;
Bablano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C.
10. The structure of the product was confirmed by a strong
À1
and broad infrared band in the range of 2000–2130 cm
1
3
1
and a peak around 138–143 ppm (-NCS) on the C NMR
1
2,13
spectrum.
The purity of the product was determined
1
using H NMR spectroscopy and an HPLC coupled with
a Chemiluminescent Nitrogen Detector (CLND) that
linearly responds to the nitrogen content in the sample.
In the H NMR spectrum of the crude product, only trace
amount of impurities (<5%) was observed. In the HPLC-
CLND chromatography, the desired isothiocyanate was
1
4
1