2
962 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 8
Sanders et al.
1
-Hydroxy-2-[4-benzylpyridinium-1-yl]ethylidene-1,1-
(10) Bergstrom, J. D.; Bostedor, R. G.; Masarachia, P. J.; Reszka, A.
A.; Rodan, G. Mechanism of aminobisphosphonate action: char-
acterization of alendronate inhibition of the isoprenoid pathway.
Arch. Biochem. Biophys. 2000, 373, 231-241.
11) Grove, J. E.; Brown, R. J.; Watts, D. J. The intracellular target
for the antiresorptive aminobisphosphonate drugs in Dictyo-
stelium discoideum is the enzyme farnesyl diphosphate synthase.
J. Bone Miner. Res. 2000, 15, 971-981.
(12) Dunford, J. E.; Thompson, K.; Coxon, F. P.; Luckman, S. P.;
Hahan, F. M.; Poulter, C. D.; Ebetino, F. H.; Rogers, M. J.
Structure-activity relationships for inhibition of farnesyl diphos-
phate synthase in vitro and inhibition of bone resorption in vivo
by nitrogen-containing bisphosphonates. J. Pharmacol. Exp.
Ther. 2001, 296, 235-242.
bisphosphonic Acid (18). 18 was prepared from 4-benzyl-
pyridine (380 mg, 2.2 mmol) following general procedure 2
(
337 mg, 40% overall yield). Anal. (C14
H
16NP
2
O
7
Na‚0.5 H
O): δ 4.08 (s, 2H, PhCH
), 7.10-7.30 (m, 5H, aromatics),
.61 (d, JHH ) 6.8 Hz, 2H, aromatics), 8.46 (d, JHH ) 6.8 Hz,
2
O)
2
(
1
C, H, N. H NMR (400 MHz, D
2
),
4
7
2
.76 (t, JPH ) 9.2 Hz, 2H, NCH
2
3
1
H, aromatics); P NMR (162 MHz, D
2
O): δ 14.0 (s).
1
-Hydroxy-2-[3-fluoropyridinium-1-yl]ethylidene-1,1-
bisphosphonic Acid (20). 20 was prepared from 3-fluoro-
pyridine (214 mg, 2.2 mmol) following general procedure 2
(
304 mg, 46% overall yield). Anal. (C
7
H
10FNP
2
O
7
) C, H, N; C:
O): δ 4.80
), 7.80-7.88 (m, 1H, aromatics), 8.15
t, JHH ) 8.0 Hz, 1H, aromatics), 8.70 (d, JHH ) 8.0 Hz, 1H,
1
calcd, 28.41; found, 27.92. H NMR (400 MHz, D
2
(
13) Luckman, S. P.; Hughes, D. E.; Coxon, F. P.; Graham, R.; Russell,
G.; Rogers, M. J. Nitrogen-containing bisphosphonates inhibit
the mevalonate pathway and prevent post-translational prenyl-
ation of GTP-binding proteins, including Ras. J. Bone Miner.
Res. 1998, 13, 581-589.
(
(
t, JPH ) 8.4 Hz, 2H, CH
2
3
1
2
aromatics); P NMR (162 MHz, D O): δ 14.0 (s).
Acknowledgment. This work was supported by the
US National Institutes of Health (grants GM65307 to
E.O. and AR45504 to C.T.M.), the European Commis-
sion (INCO program), the Plan Nacional and by the Plan
Andaluz de Investigacion (Cod. CVI-199). J.M.S. is an
American Heart Association, Midwest Affiliate, Pre-
doctoral Fellow. J.M.W.C. is a Jean Dreyfus Boissevain
Undergraduate Scholar. G.A.M. was supported by the
U.S. National Institutes of Health under a Ruth L.
Kirschstein National Research Service Award (grant
GM-65782). A.O. is a Spanish Ministry of Science and
Technology Predoctoral Fellow. We thank Carmen Te-
jero Extremera for technical assistance, and Roberto
Docampo and Felix Ruiz, for advice on D. discoideum
culture.
(14) Fisher, J. E.; Rogers, M. J.; Halasy, J. M.; Luckman, S. P.;
Hughes, D. E.; Masarachia, P. J.; Wesolowski, G.; Russell, R.
G.; Rodan, G. A.; Reszka, A. A. Alendronate mechanism of
action: geranylgeraniol, an intermediate in the mevalonate
pathway, prevents inhibition of osteoclast formation, bone
resorption, and kinase activation in vitro. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 133-138.
15) van Beek, E.; L o¨ wik, C.; van der Pluijm, G.; Papapoulos, S. The
role of geranylgeranylation in bone resorption and its suppres-
sion by bisphosphonates in fetal bone explants in vitro: A clue
to the mechanism of action of nitrogen-containing bisphos-
phonates. J. Bone Miner. Res. 1999, 14, 722-729.
(16) Montalvetti, A.; Bailey, B. N.; Martin, M. B.; Severin, G. W.;
Oldfield, E.; Docampo, R. Bisphosphonates are potent inhibitors
of Trypanosoma cruzi farnesyl pyrophosphate synthase. J. Biol.
Chem. 2001, 276, 33930-33937.
(17) Sanders, J. M.; G o´ mez, A. O.; Mao, J.; Meints, G. A.; van Brussel,
E. M.; Burzynska, A.; Kafarski, P.; Gonz a´ lez-Pacanowska, D.;
Oldfield, E. 3-D QSAR investigations of the inhibition of Leish-
mania major farnesyl pyrophosphate synthase by bisphos-
phonates. J. Med. Chem. 2003, 46, 5171-5183.
(
Supporting Information Available: Microanalytical and
NMR data are available as Supporting Information. This
material is available free of charge via the Internet at
http://pubs.acs.org.
(
18) Martin, M. B.; Grimley, J. S.; Lewis, J. C.; Heath, H. T. III;
Bailey, B. N.; Kendrick, H.; Yardley, V.; Caldera, A.; Lira, R.;
Urbina, J. A.; Moreno, S. N.; Docampo, R.; Croft, S. L.; Oldfield,
E. Bisphosphonates inhibit the growth of Trypanosoma brucei,
Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii,
and Plasmodium falciparum: A potential route to chemo-
therapy. J. Med. Chem. 2001, 44, 909-916.
References
(
1) Sambrook, P. N.; Geusens, P.; Ribot, C.; Solimano, J. A.; Ferrer-
Barriendos, J.; Gaines, K.; Verbruggen, N.; Melton, M. E.
Alendronate produces greater effects than raloxifene on bone
density and bone turnover in postmenopausal women with low
bone density: results of EFFECT (EFficacy of FOSAMAX versus
EVISTA Comparison Trial) International. J. Intern. Med. 2004,
(
(
(
19) Martin, M. B.; Sanders, J. M.; Kendrick, H.; de Luca-Fradley,
K.; Lewis, J. C.; Grimley, J. S.; van Brussel, E. M.; Olsen, J. R.;
Meints, G. A.; Burzynska, A.; Kafarski, P.; Croft, S. L.; Oldfield,
E. Activity of bisphosphonates against Trypanosoma brucei
rhodesiense. J. Med. Chem. 2002, 45, 2904-2914.
20) Moreno, B.; Bailey, B. N.; Luo, S.; Martin, M. B.; Kuhlenschmidt,
M.; Moreno, S. N.; Docampo, R.; Oldfield, E. 31P NMR of
apicomplexans and the effects of risedronate on Cryptosporidium
parvum growth. Biochem. Biophys. Res. Commun. 2001, 284,
255, 503-511.
(
2) Vasireddy, S.; Talwakar, A.; Miller, H.; Mehan, R.; Swinson, D.
R. Patterns of pain in Paget’s disease of bone and their outcomes
on treatment with pamidronate. Clin. Rheumatol. 2003, 22,
6
32-637.
376-380.
21) Ghosh, S.; Chan, J. M.; Lea, C. R.; Meints, G. A.; Lewis, J. C.;
Tovian, Z. S.; Flessner, R. M.; Loftus, T. C.; Bruchhaus, I.;
Kendrick, H.; Croft, S. L.; Kemp, R. G.; Kobayashi, E. Effects of
bisphosphonates on the growth of Entamoeba histolytica and
Plasmodium species in vitro and in vivo. J. Med. Chem. 2004,
47, 175-187.
(
3) Dawson, N. A. Therapeutic benefit of bisphosphonates in the
management of prostate cancer-related bone disease. Expert.
Opin. Pharmacother. 2003, 4, 705-716.
(
4) Rosen, L. S.; Gordon, D. H.; Dugan, W. Jr.; Major, P.; Eisenberg,
P. D.; Provencher, L.; Kaminski, M.; Simeone, J.; Seaman, J.;
Chen, B. L.; Coleman, R. E. Zoledronic acid is superior to
pamidronate for the treatment of bone metastases in breast
carcinoma patients with at least one osteolytic lesion. Cancer
(22) Yardley, V.; Khan, A. A.; Martin, M. B.; Slifer, T. R.; Araujo, F.
G.; Moreno, S. N.; Docampo, R.; Croft, S. L.; Oldfield, E. In vivo
activities of farnesyl pyrophosphate synthase inhibitors against
Leishmania donovani and Toxoplasma gondii. Antimicrob.
Agents Chemother. 2002, 46, 929-931.
2
004, 100, 36-43.
(
(
(
5) Cromartie, T. H.; Fisher, K. J.; Grossman, J. N. The discovery
of a novel site of action for herbicidal bisphosphonates. Pesticide
Biochem. Phys. 1999, 63, 114-126.
(
23) Rodriguez, N.; Bailey, B. N.; Martin, M. B.; Oldfield, E.; Urbina,
J. A.; Docampo, R. Radical cure of experimental cutaneous
leishmaniasis by the bisphosphonate pamidronate. J. Infect. Dis.
6) Cromartie, T. H.; Fisher, K. J. Method of controlling plants by
inhibition of farnesyl pyrophosphate synthase. U.S. Patent 5,-
756,423, May 26, 1998.
2002, 186, 138-140.
7) van Beek, E.; Pieterman, E.; Cohen, L.; L o¨ wik, C.; Papapoulos,
S. Nitrogen-containing bisphosphonates inhibit isopentenyl pyro-
phosphate isomerase/farnesyl pyrophosphate synthase activity
with relative potencies corresponding to their antiresorptive
potencies in vitro and in vivo. Biochem. Biophys. Res. Commun.
(
24) Garzoni, L. R.; Caldera, A.; Meirelles, M. N. L.; de Castro, S. L.;
Meints, G.; Docampo, R.; Oldfield, E.; Urbina, J. A. Selective in
vitro effects of the farnesyl pyrophosphate synthase inhibitor
risedronate on Trypanosoma cruzi. Intl. J. Antimicrob. Agents
2004, 23, 273-285.
1
999, 255, 491-494.
(
25) Garzoni, L. R.; Waghabi, M. C.; Baptista, M. M.; de Castro, S.
L.; Meirelles, M. N. L.; Britto, C.; Docampo, R.; Oldfield, E.;
Urbina, J. A. Antiparasitic activity of risedronate in a murine
model of acute Chagas' disease. Int. J. Antimicrob. Agents 2004,
23, 286-290.
(
8) van Beek, E.; Pieterman, E.; Cohen, L.; L o¨ wik, C.; Papapoulos,
S. Farnesyl pyrophosphate synthase is the molecular target of
nitrogen-containing bisphosphonates. Biochem. Biophys. Res.
Commun. 1999, 264, 108-111.
(
9) Keller, R. K.; Fliesler, S. J. Mechanism of aminobisphosphonate
action: characterization of alendronate inhibition of the iso-
prenoid pathway. Biochem. Biophys. Res. Commun. 1999, 266,
(26) Wang, L.; Kamath, A.; Das, H.; Li, L.; Bukowski, J. F. Antibacte-
rial effect of human Vγ2Vδ2 T cells in vivo. J. Clin. Invest. 2001,
108, 1349-1357.
560-563.