8
8
M. Jafarian et al. / Journal of Alloys and Compounds 478 (2009) 83–88
4
. Conclusion
[7] G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electrochem. Soc. 138
1982) 225–231.
8] D.J. Astely, J.A. Harrison, H.R. Thirsk, Trans. Faraday Soc. 64 (1968) 192–201.
9] M. Fleischmann, H.R. Thirsk, Electrochim. Acta 2 (1960) 22–49.
(
[
[
Electrodeposition of aluminum and lead onto an aluminum
electrode from molten (AlCl –NaCl–KCl) salts were studied by
[10] G.A. Gunawardena, G.J. Hills, I. Montenegro, Electrochim. Acta 23 (1978)
93–697.
3
6
the methods of cyclic voltammetry, chronopotentiometry and
chronoamperometry. Electrochemical deposition of aluminum
onto aluminum electrode in basic melt was found to proceed via
a nucleation/growth mechanism, while deposition of lead from
basic melts showed that ionic Pb species reduction was con-
trolled by diffusion. The diffusion coefficient of such species was
obtained by voltammetry, chronopotentiometry and is in agree-
ment with the chronoamperometric measurements and was found
[
11] M. Fleischmann, H.R. Thirsk, in: P. Delahay (Ed.), Advanced Electrochemistry
and Electrochemical Engineering, vol. 3, Academic Press, New York, 1963, p.
123.
[12] I.N. Stranski, R. Kaishev, Z. Physik 36 (1935) 393–398.
[
13] M. Volmer, Z. Physik 22 (1921) 646–652.
[14] W. Kautek, S. Birkle, Electrochim. Acta 34 (1989) 1213–1218.
[15] K. Kawamura, Electrochim. Acta 12 (1967) 1233–1244.
[16] M. Paucirova, K. Matiasovsky, Electrodep. Surf. Treat. 3 (1975) 121–128.
[
17] L. Qingfeng, H.A. Hjuler, R.W. Berg, N.J. Bjerrum, J. Electrochem. Soc. 138 (1991)
63–766.
18] P. Rolland, G.J. Mamantov, J. Electrochem. Soc. 123 (1976) 1299–1303.
7
−
6
2
−1
.
to be 8 × 1 cm s
[
The analyses of the chronoamerograms indicate that the depo-
sition process of lead on Al substrates is 3D nucleation and growth
which controlled by diffusion. The magnitudes of the associated
kinetic parameters and the parameter reflecting double layer charg-
ing in the initial stages of deposition are reported. The kinetic
parameters of the electrocrystallization of lead increase with
increasing applied potential. The efficiency of the utilization of the
available surface nucleation sites in different potentials indicates
that in more cathodic potential larger number of surface sites are
occupied with lead nuclei. On the basis of atomistic theory the num-
ber of atoms that form a critical nucleus was found to be 2.1. In basic
solutions the deposit morphology is dull grey, spongy and non-
compact while in the presence of PbCl2 smoother and non-porous
aluminum is formed.
[19] L. Qingfeng, H.A. Hjuler, R.W. Berg, N.J. Bjerrum, J. Electrochem. Soc. 137 (1990)
794–2798.
20] K. Grjotheim, K. Mathiasovsky, Acta Chem. Scand. A 34 (1980) 666–670.
21] N. Koura, J. Electrochem. Soc. 127 (1980) 1529–1531.
[22] M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, J. Electroanal. Chem. 588 (2006)
90–196.
23] M. Jafarian, F. Gobal, I. Danaee, M.G. Mahjani, Electrochim. Acta 52 (2007)
437–5443.
2
[
[
1
[
5
[24] R. Greef, R. Peat, L.M. Peter, D. Pletcher, J. Robinson, Instrumental Methods in
Electrochemistry, Ellis Horwood, Chichester, 1985 (Chapter 9).
[
25] S. Fletcher, C.S. Halliday, D. Gates, M. Westcott, T. Lwin, G. Nelson, J. Electroanal.
Chem. 159 (1983) 267–285.
[26] S. Fletcher, Electrochim. Acta 28 (1983) 917–923.
[27] D.J. Hills, D.J. Schriffrin, J. Thomson, Electrochim. Acta 19 (1974) 657–670.
[
[
28] F. Lantelme, J. Chevalet, J. Electroanal. Chem. 121 (1981) 311–327.
29] G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem. 138
(1982) 225–239.
[30] G.R. Stafford, G.M. Haarberg, Plasma Ions 2 (1999) 35–44.
31] Q.-X. Qin, M. Skyllas-Kazacos, J. Electroanal. Chem. 168 (1984) 193–206.
[
[
32] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applica-
tions, second ed., Wiley, 2000.
33] L. Komsiyska, G. Staikov, Electrochim. Acta 54 (2008) 168–172.
References
[
[
[
[
[
1] H.A. Hjuler, R.W. Berg, N.J. Bjerrum, J. Power Sources 10 (1985) 1–11.
2] R. Beratazzoli, D. Pletcher, Electrochim. Acta 38 (1993) 671–676.
3] E. Gomez, M. Marin, F. Sanz, E. Valles, J. Electroanal. Chem. 422 (1997) 139–147.
4] M.S. Cruz, F. Alanzo, J.M. Palacois, J. Appl. Electrochem. 23 (1993) 364–
[34] G. Baltrunas, A. Valiuniene, Z. Margarian, G. Viselgiene, G. Popkirov, Elec-
trochim. Acta 53 (2008) 6513–6520.
[35] B.R. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879–889.
[36] M. Miranda-Hernandez, I. Gonzalez, N. Batina, J. Phys. Chem. B 105 (2001)
4214–4223.
[37] B.R. Scharifker, J. Mostany, J. Electroanal. Chem. 177 (1984) 13–23.
[38] A. Milchev, S. Stoyanov, R. Kaichev, Thin Solid Films 22 (1974) 267–274.
[39] D. Kaschiev, J. Chem. Phys. 76 (1982) 5098–5102.
3
70.
5] M. Jafarian, M.G. Mahjani, F. Gobal, I. Danaee, J. Appl. Electrochem. 36 (2006)
169–1173.
6] E. Souteyrard, G. Maruin, D. Merciner, J. Electroanal. Chem. 161 (1984) 17–30.
[
[
1