Organometallics
ARTICLE
Solid-State Thermolyses of 1ꢀ5. Thermolysis experiments
were performed on analytically pure samples of 1ꢀ5 to assess their
solid-state thermal decomposition products. A 20 cm long, 2.5 cm
diameter quartz tube, equipped with female 24/40 joints on each end,
was fitted with two flow control valves that were attached to male 24/40
joints. A 6 cm long, 1 cm diameter glass vial was charged with 1.00 g of
the sample in a glovebox. The vial was placed in the center of the quartz
tube. This apparatus was placed into a tube furnace, and a 50 sccm flow
of argon was established. The sample was then heated to 500 °C for 1 h
and was cooled to room temperature under an argon flow. Subsequently,
the powder residues were collected from the inside of the quartz tube
and subjected to X-ray powder diffraction analyses as described in
the text.
Weiland, C.; Willis, B. G. J. Vac. Sci. Technol. A 2009, 27, 660–667.
(h) Lee, B. H.; Hwang, J. K.; Nam, J. W.; Lee, S. U.; Kim, J. T.; Koo,
S. M.; Baunemann, A.; Fischer, R. A.; Sung, M. M. Angew. Chem., Int. Ed.
2009, 48, 4536–4539. (i) Li, Z.; Gordon, R. G. Chem. Vap. Deposition
2006, 12, 435–441. (j) Li, Z.; Rahtu, A.; Gordon, R. G. J. Electrochem. Soc.
2006, 153, C787–C794. (k) Park, K.-H.; Bradley, A. Z.; Thompson, J. S.;
Marshall, W. J. Inorg. Chem. 2006, 45, 8480–8482. (l) Li, Z.; Gordon,
R. G.; Farmer, D. B.; Lin, Y.; Vlassak, J. Electrochem. Solid-State Lett.
2
005, 8, G182–G185. (m) Niskanen, A.; Rahtu, A.; Sajavaara, T.; Arstila,
K.; Ritala, M.; Leskel €a , M. J. Electrochem. Soc. 2005, 152, G25–G28.
(n) Li, Z.; Barry, S. T.; Gordon, R. G. Inorg. Chem. 2005, 44, 1728–1735.
(o) Lim, B. S.; Rahtu, A.; Gordon, R. G. Nat. Mater. 2003, 2, 749–754.
(p) Lim, B. S.; Rahtu, A.; Park, J. S.; Gordon, R. G. Inorg. Chem. 2003,
42, 7951–7958. (q) Huo, J.; Solanki, R.; McAndrew, J. J. Mater. Res.
X-ray Crystallographic Structure Determinations. Diffrac-
tion data were measured on a Bruker X8 APEX-II k-geometry diffracto-
meter with Mo radiation and a graphite monochromator. Frames were
collected at 100 K with the detector at 40 mm and 0.3ꢀ0.5° between
2
002, 17, 2394–2398. (r) Solanki, R.; Pathangey, B. Electrochem. Solid-
State Lett. 2000, 3, 479–480. (s) Martensson, P.; Carlsson, J.-O. Chem.
Vap. Deposition 1997, 3, 45–50. (t) Juppo, M.; Ritala, M.; Leskel €a , M.
J. Vac. Sci. Technol. A 1997, 15, 2330–2333.
(3) (a) Haneda, M.; Iijima, J.; Koike, J. Appl. Phys. Lett. 2007,
90, 252107. (b) Usui, T.; Nasu, H.; Takahashi, S.; Shimizu, N.;
Nishikawa, T.; Yoshimaru, M.; Shibata, H.; Wada, M.; Koike, J. IEEE
Trans. Electron Devices 2006, 52, 2492–2499. (c) Koike, J.; Wada, M.
Appl. Phys. Lett. 2005, 87, 041911.
2
6
each frame. The frames were recorded for 3ꢀ5 s. APEX-II and
27
SHELX software were used in the collection and refinement of the
models. All structures contained discrete neutral complexes without ions
or solvent. Complex 1 crystallized with two independent but chemically
equivalent molecules in the asymmetric unit. Complexes 3ꢀ5 are all
isostructural, with a half-molecule in the asymmetric unit. The iron,
cobalt, and nickel atoms all occupy a crystallographic mirror plane.
(
4) (a) Chu, J. P.; Lin, C. H.; John, V. S. Appl. Phys. Lett. 2007,
1, 132109. (b) Barmak, K.; Cabral, C., Jr.; Rodbell, K. P.; Harper,
J. M. E. J. Vac. Sci. Technol. B 2006, 24, 2485–2498.
5) (a) Lee, H.-B.-R.; Band, S.-H.; Kim, W.-H.; Gu, G. H.; Lee, Y. K.;
Chung, T.-M.; Kim, C. G.; Park, C. G.; Kim, H. Jpn. J. Appl. Phys. 2010,
9, 05FA11. (b) Lee, H.-B.-R.; Gu, G. H.; Son, J. Y.; Park, C. G.; Kim, H.
9
(
’
ASSOCIATED CONTENT
4
S
Supporting Information. CIF files giving X-ray crystal-
b
Small 2008, 4, 2247–2254. (c) Yang, C.-M.; Yun, S.-W.; Ha, J.-B.; Na,
K.-I.; Cho, H.-I.; Lee, H.-B.; Jeong, J.-H.; Kong, S.-H.; Hahm, S.-H.; Lee,
J.-H. Jpn. J. Appl. Phys. 2007, 46, 1981–1983. (d) Do, K.-W.; Yang,
C.-M.; Kang, I.-S.; Kim, K.-M.; Back, K.-H.; Cho, H.-I.; Lee, H.-B.; Kong,
S.-H.; Hahm, S.-H.; Kwon, D.-H.; Lee, J.-H.; Lee, J. H. Jpn. J. Appl. Phys.
lographic data for the structure determinations of 1 and 3ꢀ5 and
figures giving perspective views of 4 and 5, X-ray powder
diffraction spectra of the thermolysis products of 1ꢀ5, and vapor
pressure determination reports for 2 and 5. This material is
available free of charge via the Internet at http://pubs.acs.org.
2
006, 45, 2975–2979. (e) Chae, J.; Park, H.-S.; Kang, S.-W. Electrochem.
Solid-State Lett. 2002, 5, C64–C66.
6) (a) Kang, S. H. JOM 2008, 60, 28–33. (b) Vaz, C. A. F.; Bland,
(
’
AUTHOR INFORMATION
J. A. C.; Lauhoff, G. Rep. Prog. Phys. 2008, 71, 056501. (c) Shiratsuchi, Y.;
Yamamoto, M.; Bader, S. D. Prog. Surf. Sci. 2007, 82, 121–160.
Corresponding Author
(7) International Technology Roadmap for Semiconductors, http://
*E-mail: chw@chem.wayne.edu.
www.itrs.net/.
(8) (a) Leskel €a , M.; Ritala, M. Angew. Chem., Int. Ed. 2003, 42,
5
1
548–5554. (b) Leskel €a , M.; Ritala, M. Thin Solid Films 2002, 409,
38–146. (c) Ritala, M.; Leskel €a , M. Nanotechnology 1999, 10, 19–24.
’
ACKNOWLEDGMENT
We are grateful to the U.S. National Science Foundation
(d) Niinist €o , L. Curr. Opin. Solid State Mater. Sci. 1998, 3, 147–152.
(e) Ritala, M. Appl. Surf. Sci. 1997, 112, 223–230. (f) Suntola, T. Thin
Solid Films 1992, 216, 84–89.
(Grant No. CHE-0910475) and SAFC Hitech for support of this
research.
(
9) Putkonen, M.; Niinist €o , L. Top. Organomet. Chem. 2005, 9,
25–145.
10) (a) Kim, J.-M.; Lee, H.-B.-R.; Lansalot, C.; Dussarrat, C.;
1
’
REFERENCES
(
(
1) (a) Kim, H. Surf. Coat. Technol. 2006, 200, 3104–3111. (b) Kim,
Gatineau, J.; Kim, H. Jpn. J. Appl. Phys. 2010, 49, 05FA10. (b) Li, Z.;
Lee, D. K.; Coulter, M.; Rodriguez, L. N. J.; Gordon, R. G. Dalton Trans.
2008, 2592–2597. (c) Lee, H.-B.-R.; Kim, H. ECS Trans. 2008,
16, 219–225. (d) Kim, K.; Lee, K.; Han, S.; Park, T.; Lee, Y.; Kim, J.;
Yeom, S.; Jeon, H. Jpn. J. Appl. Phys. 2007, 46, L173–L176. Lee, K.; Kim,
K.; Park, T.; Jeon, H.; Lee, Y.; Kim, J.; Yeom, S. J. Electrochem. Soc. 2007,
154, H899–H903. (e) Kim, K.; Lee, K.; Han, S.; Jeong, W.; Jeon, H.
J. Electrochem. Soc. 2007, 154, H177–H181. Lee, H.-B.-R.; Kim, H.
Electrochem. Solid-State Lett. 2006, 9, G323–G325.
(11) Kucheyev, S. O.; Biener, J.; Baumann, T. F.;Wang, Y. M.; Hamza,
A. V.; Li, Z.; Lee, D. K.; Gordon, R. G. Langmuir 2008, 24, 943–948.
(12) Gardiner, M. G.; Hanson, G. R.; Henderson, M. J.; Lee, F. C.;
Raston, C. L. Inorg. Chem. 1994, 33, 2456–2461.
H. J. Vac. Sci. Technol. B 2003, 21, 2231–2261. (c) Merchant, S. M.;
Kang, S. H.; Sanganeria, M.; van Schravendijk, B.; Mountsier, T. JOM-J.
Miner. Met. Mater. Soc. 2001, 52, 43–48. (d) Wang, S.-Q. MRS Bull.
994, 19, 30–40. Roule, A.; Amuntencei, M.; Deronzier, E.; Haumesser,
P. H.; Da Silva, S.; Avale, X.; Pollet, O.; Baskaran, R.; Passemard, G.
1
Microelectron. Eng. 2007, 84, 2610–2614.
(2) (a) Waechtler, T.; Ding, S.-F.; Hofmann, L.; Mothes, R.; Xie, Q.;
Oswald, S.; Detavernier, C.; Schultz, S. E.; Qu, X.-P.; Lang, H.; Gessner,
T. Microelectron. Eng. 2011, 88, 684–689. (b) Moon, D.-Y.; Han, D.-S.;
Shin, S.-Y.; Park, J.-W.; Kim, B. M.; Kim, J. H. Thin Solid Films 2011,
5
19, 3636–3640. (c) Ma, Q.; Guo, H.; Gordon, R. G.; Zaera, F. Chem.
Mater. 2010, 22, 352–359. (d) Dai, M.; Kwon, J.; Halls, M. D.; Gordon,
R. G.; Chabal, Y. J. Langmuir 2010, 26, 3911–3917. (e) Vidjayacoumar,
B.; Emslie, D. J. H.; Clendenning, S. B.; Blackwell, J. M.; Britten, J. F.;
Rheingold, A. L. Chem. Mater. 2010, 22, 4844–4853. (f) Vidjayacoumar,
B.; Emslie, D. J. H.; Clendenning, S. B.; Blackwell, J. M.; Britten, J. F.
Chem. Mater. 2010, 22, 4854–4866. (g) Hsu, I. J.; McCandless, B. E.;
(13) (a) Ghosh, M.; Sproules, S.; Weyherm €u ller, T.; Wieghardt, K.
Inorg. Chem. 2008, 47, 5963–5970. (b) Kreisel, K. A.; Yap, G. P. A.;
Theopold, K. H. Inorg. Chem. 2008, 47, 5293–5303. (c) Kreisel, K. A.;
Yap, G. P. A.; Dmitrenko, O.; Landis, C. R.; Theopold, K. H. J. Am.
Chem. Soc. 2007, 129, 14162–14163.
5
016
dx.doi.org/10.1021/om200626w |Organometallics 2011, 30, 5010–5017