1484
S. Oropeza et al. / Materials Research Bulletin 47 (2012) 1478–1485
Fig. 11. The EDX spectrum and the ED pattern for zero-valent iron nanoparticles.
The typical images obtained by transmission electron micros-
Acknowledgement
copy of pure nanoparticles collected after 2, 5 and 12 h of reaction
are presented in Fig. 8 to illustrate the formation of zero-valent
iron nanoparticles.
We would like to thank to Consejo Nacional de Ciencia y
´
Tecnologıa (CONACyT) for the student grant during two years.
The nanoparticles began to aggregate as the reaction pro-
gressed. The images show that the aggregates are formed by
nanoparticles with spherical shapes.
References
The spherical shape is confirmed in Fig. 10, which presents
images of samples taken at 2 h, 5 h and 12 h of reaction time on a
smaller scale than in Fig. 8. The figure reveals that the zero-valent
iron nanoparticles have a diameter smaller than 5 nm in all cases.
The size and morphology remained constant during the entire
reaction. This can be explained due to that the formation of a
nanoparticle requires the accumulation of precursors in a single
nanodomain and by the deformability of the precursor ligands,
which acted as a surfactant layer that controlled the material
exchange process among nanodomains [44,51]. In this case, the
precursor had a low concentration, and, consequently there was a
lower material exchange rate, resulting in the formation of a
greater number of nuclei and smaller nanoparticles with spherical
shapes [52].
[1] S. Manako, J. Fujita, Y. Ochiai, E. Nomura, S. Matsui, Jpn. J. Appl. Phys. Pt I 37 (1998)
6785–6787.
[2] P.K.H. Ho, J.S. Kim, J.H. Burroughes, H. Becker, S.F.Y. Li, T.M. Brown, F. Cacialli, R.H.
Friend, Nature 404 (2000) 481–484.
[3] J. Gierak, C. Vieu, H. Launois, G.B. Asaayac, A. Septier, Appl. Phys. Lett. 70 (1997)
2049–2051.
[4] Y. Akiyama, F. Mizukami, Y. Kiyozumi, K. Maeda, H. Izutsu, K. Sakaguchi, Angew.
Chem. (1999) 1420–1510.
[5] N. Hirose, H. Ohta, T. Matsui, M. Fukada, IEEE Trans. Appl. Supercond. 7 (1997)
2635–2637.
[6] Y. Hsu, T.E.F.M. Standaert, G.S. Oehrlein, T.S. Kuan, K. Sayre, K.Y. Rose, S.M. Lee,
Rossnagel J. Vac. Sci. Technol. B 16 (1998) 3344–3348.
[7] I.W. Rangelow, F. Shi, P. Hudek, P.B. Grabiec, B. Volland, E.I. Givargizov, A.N.
Stepanova, L.N. Obolenskaya, E.S. Mashkova, V.A. Molchanov, J. Vac. Sci. Technol. B
16 (1998) 3185–3191.
[8] F. Calvo, Phys. Rev. B 67 (2003) 161403(R)–161406(R).
[9] D. Stock, A.G.W. Leslie, J.E. Walker, Science 286 (1999) 1700–1705.
[10] D.S. Mathew, R.-S. Juang, J. Chem. Eng. 129 (2007) 51–65.
[11] H. Si, C. Zhou, H. Wang, S. Lou, S. Li, Z. Du, L. Song Li, J. Colloid Interface Sci. 327
(2008) 466–471.
A
bright field images of nanoparticles along with the
corresponding EDX analysis and electron diffraction pattern are
presented in Fig. 11. These images confirm that the particles are
actually constituted by Fe0. The unlabeled peaks shown in the EDX
pattern belong to Cu from the grid.
[12] A.K. Gupta, M. Gupta, Biomaterials 26 (2005) 3995–4021.
[13] X. Huang, L.M. Bronstein, J. Retrum, C. Dufort, I. Tsvetkova, S. Aniagyei, B. Stein, G.
Stucky, B. McKenna, N. Remmes, D. Baxter, C. Cheng Kao, B. Dragnea, Nano Lett. 7
(2007) 2407–2416.
[14] J.W. Bulte, D.L. Kraitchman, NMR Biomed. 17 (2004) 484–499.
[15] W.J.M. Mulder, G.J. Strikers, G.A.F. van Tilborg, A.W. Griffioen, K. Nicolay, NMR
Biomed. 19 (2006) 142–164.
[16] Y.R. Chemla, H.L. Crossman, Y. Poon, R.R.S. McDermott, M.D. Alper, J. Clarke, Proc.
Natl. Acad. Sci. U. S. A. 97 (2000) 14268–14272.
4. Conclusions
[17] N. Pamme, C. Wilhem, Lab Chip 6 (2006) 974–980.
[18] A. Yu Mens´shicova, B.M. Shabelsels, Yu.O. Skurkis, K.S. Inkin, N.A. Chekina, S.S.
It was possible to synthesize zero-valent iron nanoparticles by
hydrogenating of bis[bis(trimethylsilyl)amido]iron(II) [Fe[N(-
Si(CH3)3)2]2] at room temperature and a pressure of 3 atm in a
stainless steel reactor. The design of the reactor employed in the
synthesis allowed samples to be taken at different times during the
reaction. It was possible to determine that 100% conversion of the
zero-valent iron nanoparticles was reached after 12 h of reaction.
The results of the DLS and TEM analysis demonstrated the
existence of nanoparticles with spherical shapes and diameters
smaller than 5 nm, which formed aggregates as large as 900 nm.
The results of the EDX and electron diffraction techniques
confirmed the presence of zero-valent iron in the nanoparticles.
The microanalysis results revealed the presence of 100% zero-
valent iron.
´
Ivanchev, Russ. J. Gen. Chem. 77 (2007) 354–362.
[19] S. de De, D.R. Miller, R.E. Continetti, J. Phys. Chem. C 112 (2008) 17102–17108.
[20] L. Wang, Z. Yang, Y. Zhang, L. Wang, J. Phys. Chem. C 113 (2009) 3955–3959.
[21] L.-M. Lacroix, S. Lachaize, A. Falqui, T. Blon, J. Carrey, M. Respaud, F. Dumestre, C.
Amiens, O. Margeat, B. Chaudret, P. Lecante, E. Snoeck, J. Appl. Phys. 103 (2008),
07D521–07D523.
[22] J. Zhou, J. Ralson, R. Sedev, D.A. Beattie, J. Colloid Interface Sci. 331 (2009) 251–
262.
[23] Y. Mao, S.S. Wong, J. Am. Chem. Soc. 128 (2006) 8217–8226.
[24] C. Burda, X. Chen, R. Narayanan, M. El-Sayed, Chem. Rev. 10 (2005) 1025–1102.
[25] B. Cushing, V. Kolesnichenko, Ch. O’Connor, Chem. Rev. 104 (2004) 3893–3946.
[26] S.H. Sun, S. Anders, T. Thomson, J.E.E. Baglin, M.F. Toney, H.F. Hamann, C.B.
Murray, B.D. Terris, J. Phys. Chem. B 107 (2003) 5419–5425.
[27] S.C. Tsang, C.H. Yu, X. Gao, K. Tam, J. Phys. Chem. B 110 (2006) 16914–16922.
[28] D. Wostek-Wojciechowska, J.K. Jeszka, C. Amiens, B. Chaudret, P. Lecante, J.
Colloid Interface Sci. 287 (2005) 107–113.