Z. Anorg. Allg. Chem., 1989, 578, 7; (i) M. Baudler, J. Hellmann,
P. Bachmann, K. F. Tebbe, R. Fröhlich and M. Feher, Angew. Chem.,
1981, 93, 415; M. Baudler, J. Hellmann, P. Bachmann, K. F. Tebbe,
R. Fröhlich and M. Feher, Angew. Chem., Int. Ed. Engl., 1981, 20, 406;
(j) M. Baudler and H. Jachow, Z. Naturforsch., Teil B, 1994, 49, 1755;
(k) M. Baudler, M. Michels, J. Hahn and M. Pieroth, Angew. Chem.,
1985, 97, 514; M. Baudler, M. Michels, J. Hahn and M. Pieroth, Angew.
Chem., Int. Ed. Engl., 1985, 24, 504.
and P4–P5 bond lengths (213.7(6) and 211.4(6) pm) are smaller
than the other P–P bond lengths (219.9(6)–226.5(6) pm), which are
in the typical range for single bonds. Similarly, one of the P–PtBu
distances in 1 is shorter (213.2(1) pm) than the other P–P bonds
(220.4(1)–222.9(1) pm).16
t
{cyclo-(P4 Bu3)PtBu}2 (4) crystallises in the monoclinic space
group C2/c with four molecules in the unit cell. The centre of the
P5–P5′ bond coincides with a twofold axis (Fig. 2).
4 M. Baudler, M. Schnalke and Ch. Wiaterek, Z. Anorg. Allg. Chem.,
1990, 585, 7.
5 N. Wiberg, A. Wörner, H.-W. Lerner, K. Karaghiosoff, D. Fenske,
G. Baum, A. Dransfeld and P. von Rague Schleyer, Eur. J. Inorg. Chem.,
1998, 6, 833.
6 M. Feher, R. Fröhlich and K. F. Tebbe, Z. Kristallogr., 1982, 158, 241.
7 (a) M. Häser and O. Treutler, J. Chem. Phys., 1995, 102, 3703;
(b) M. Marco, U. Schneider and R. Ahlrichs, J. Amer. Chem. Soc., 1992,
114, 9551.
8 M. Baudler, Ch. Gruner, G. Fürstenberg, B. Kloth, F. Saykowski and
U. Özer, Z. Anorg. Allg. Chem., 1978, 446, 169.
9 M. Baudler and B. Makowka, Z. Anorg. Allg. Chem., 1985, 528, 7.
10 A. Schmidpeter and G. Burget, Phosphorus Sulfur, 1985, 22, 323.
11 G. Fritz and K. Stoll, Z. Anorg. Allg. Chem., 1986, 538, 78.
12 G. Fritz, R. Biastoch, K. Stoll, T. Vaahs, D. Hanke and H. W. Schneider,
Phosphorus Sulfur, 1987, 30, 385.
13 A. Schisler, U. Huniar, P. Lönnecke, R. Ahlrichs and E. Hey-Hawkins,
Angew. Chem., 2001, 113, 4345; A. Schisler, U. Huniar, P. Lönnecke,
R. Ahlrichs and E. Hey-Hawkins, Angew. Chem., Int. Ed., 2001, 40,
4217.
14 (a) M. Baudler and H. Suchomel, Z. Anorg. Allg. Chem., 1983, 503,
7; (b) H. Binder, B. Schuster, W. Schwarz and K. W. Klinkhammer,
Z. Anorg. Allg. Chem., 1999, 625, 699; (c) M. Baudler, L. Riese-Meyer
and U. Schings, Z. Anorg. Allg. Chem., 1984, 519, 24.
15 (a) M. Baudler and H. Suchomel, Z. Anorg. Allg. Chem., 1983, 505,
39; (b) D. Bongert, G. Heckmann, W. Schwarz, H.-D. Hausen and
H. Binder, Z. Anorg. Allg. Chem., 1995, 621, 1358; (c) D. Bongert,
H.-D. Hausen, W. Schwarz, G. Heckmann and H. Binder, Z. Anorg.
Allg. Chem., 1996, 622, 1167.
Fig. 2 ORTEP plot of the molecular structure of compound 4; H atoms
are omitted for clarity.
The molecule consists of two cyclotetraphosphanes, which have
a butterfly conformation, with one exocyclic PtBu group. The dihe-
dral angle between the planes P1–P2–P4 and P2–P3–P4 is 40.59(4)°.
The P–P distances range from 220.39(8) to 224.29(9) pm and are
typical for P–Psingle bonds.29 The P4 chain P1–P5–P5′–P1 has a syn
arrangement. The torsion angle between the planes P1–P5–P5′ and
P1′–P5′–P5 is only 4.9(1)°.
16 A. Schisler, Dissertation, Leipzig, 2003; A. Schisler, P. Lönnecke
and E. Hey-Hawkins, Dalton Trans.; to be submitted; A. Schisler,
P. Lönnecke and E. Hey-Hawkins, Inorg. Chem., to be submitted;
A. Schisler, P. Lönnecke and E. Hey-Hawkins, Chem. Eur. J., to be
submitted.
Conclusion
While the reaction of [Na(THF)4][cyclo-(P5tBu4)] (1) with Et2AlCl or
17 A negative sign was generally used for the coupling constants 1JPP and
the remaining signs and coupling constants were calculated with the
program SPINWORKS (K. Marat, SPINWORKS, version 2000 05 10,
University of Manitoba).
t
GeCl4 gives the substitution products, Et2Al{cyclo-(P5 Bu4)}(THF)
t
(2) and GeCl3{cyclo-(P5 Bu4)}, 1 reacts with SnCl2, PbCl2 or BiCl3
t
with formation of the structural isomers {cyclo-(P5 Bu4)}2 (3) and
t
{cyclo-(P4 Bu3)PtBu}2 (4) (besides other cyclic phosphanes) and
18 A. Schisler, Diplomarbeit, Leipzig, 1999.
19 K. Issleib and M. Hoffmann, Chem. Ber., 1966, 99, 1320.
20 M. Baudler, J. Hahn, H. Dietsch and G. Fürstenberg, Z. Naturforsch.,
Teil B, 1976, 31, 1305.
elemental metal.
Acknowledgements
21 M. Baudler and H. Tschäbunin, Z. Anorg. Allg. Chem., 1984, 511, 77.
22 M. Baudler and Ch. Gruner, Chem. Ber., 1982, 115, 1739.
23 M. Baudler, J. Hellman and T. Schmidt, Z. Naturforsch., Teil B, 1983,
38, 537.
A. S. thanks the Saxonian Ministry of Science and Art for a PhD
grant.
24 M. Karnop, W.-W. du Mont, P. G. Jones and J. Jeske, Chem. Ber., 1997,
130, 1611.
References
25 Data collection and cell refinement: D. Z. Otwinowski and W. Minor,
Methods in Enzymology, Vol. 276, Macromolecular Crystallography,
Part A, ed. C. W. Carter, Jr. and R. M. Sweet, Academic Press,
1997, p. 307. Absorption correction: SORTAV: R. H. Blessing, Acta
Crystallogr., Sect. A, 1995, 51, 33; R. H. Blessing, J. Appl. Crystallogr.,
1997, 30, 421.
26 Structure solution and refinement: SHELXS and SHELXL97:
G. M. Sheldrick 1997, University of Göttingen, Germany.
27 K. A. Jensen, Z. Anorg. Allg. Chem., 1936, 229, 265.
28 M. Baudler, G. Reuschenbach, J. Hellmann and J. Hahn, Z. Anorg. Allg.
Chem., 1983, 499, 89.
1 M. Baudler and K. Glinka, Chem. Rev., 1993, 93, 1623.
2 H. Köhler and A. Michaelis, Ber. Dtsch. Chem. Ges., 1877, 10, 807.
3 (a) M. Baudler, C. Wiaterek and K. Kazmierczak, Z. Anorg. Allg.
Chem., 1989, 579, 7; (b) M. Baudler, L. De Riese-Meyer and
C. Wiaterek, Z. Naturforsch., Teil B, 1989, 44, 375; (c) M. Baudler
and L. De Riese-Meyer, Z. Naturforsch., Teil B, 1986, 41, 399;
(d) M. Baudler and B. Makowka, Angew. Chem., 1984, 96, 976;
M. Baudler and B. Makowka, Angew. Chem., Int. Ed. Engl., 1984, 23,
987; (e) M. Baudler and V. Arndt, Z. Naturforsch., Teil B, 1984, 39, 275;
(f ) M. Baudler and H. Tschaebunin, Z. Anorg. Allg. Chem., 1992, 617,
31; (g) M. Baudler and M. Schnalke, Z. Anorg. Allg. Chem., 1990, 585,
18; (h) M. Baudler, M. Schnalke, C. Wiaterek, S. Opiela and J. Hahn,
29 D. E. C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier,
Amsterdam, 1974.
2 8 9 8
D a l t o n T r a n s . , 2 0 0 4 , 2 8 9 5 – 2 8 9 8