9
2
E. Puello-Polo, J.L. Brito / Journal of Molecular Catalysis A: Chemical 281 (2008) 85–92
[5] S. Ramanathan, S.T. Oyama, J. Phys. Chem. 99 (1995) 16365.
4
. Conclusions
[
[
6] G.M. Dolce, P.E. Savage, L.T. Thompson, Energy Fuels 11 (1997) 3.
7] P. Da Costa, C. Potvin, J.M. Manoli, J.L. Lemberton, G. Perot, G. Mari-
adassou, J. Mol. Catal. A: Chem. 184 (2002) 323.
Theinfluenceofthetypeofprecursor(sulfatevs. nitrateofFe,
Co, or Ni promotor) and the synthesis method (conventional vs
carbothermal carbiding) of activated carbon supported Fe-Mo,
Co-Mo and Ni-Mo carbides was determined by XRD and XPS,
and also evidenced in thiophene hydrodesulfurization (HDS)
activity. The XRD analysis showed that the carbides obtained
[
8] J.C. Schlatter, S.T. Oyama, J.E. Metcalfe, J.M. Lambert, Ind. Eng. Chem.
Res. 27 (1988) 1648.
[9] P. Da Costa, C. Potvin, J.M. Manoli, B. Genin, G. Mariadassou, Fuel 83
2004) 1717.
10] V. Schwartz, S.T. Oyama, J.G. Chen, J. Phys. Chem. B 104 (2000) 8800.
11] B. Dhandapani, S. Ramanathan, C.C. Yu, B. Fruhberger, J.G. Chen, S.T.
Oyama, J. Catal. 176 (1998) 61.
(
[
[
with sulfate precursors generated Fe3Mo3C or M Mo C2 phases
6
6
(
M = Co or Ni), while the solids obtained from nitrate precursors
[
12] D.J. Sajkowski, S.T. Oyama, Appl. Catal. A: Gen. 134 (1996) 339.
formed -Mo2C and metals. XPS showed the presence at the sur-
[13] P.A. Aegerter, W.W.C. Quigley, G.J. Simpson, D.D. Ziegler, J.W. Logan,
K.R. McCrea, S. Glazier, M.E. Bussell, J. Catal. 164 (1996) 109.
δ+
4+
6+
3+
2+
0
2+
face of Mo , Mo , Mo , Fe , Co , Ni and Ni species.
All the carbides show similar species of Fe, Co, and Ni on the
surface, however the relative proportions of Mo species depends
on the synthesis method and/or type of precursor. Thus, the cat-
alytic activity was influenced by the proportion of molybdenum
species at the surface. The carbothermal method and nitrate pre-
cursor indifferently from the used synthesis method generated
[
14] K.R. McCrea, J.W. Logan, T.L. Tarbuck, J.L. Heiser, M.E. Bussell, J. Catal.
71 (1997) 255.
1
[
15] L. Leclercq, M. Provost, H. Pastor, J. Grimblot, A. Hardy, L. Gengembre,
G. Leclercq, J. Catal. 117 (1989) 371.
[16] L.A. Santill a´ n-Vallejo, J.A. Melo-Banda, A.I. Reyes de la Torre, G.
Sandoval-Robles, J.M. Dom ´ı nguez, A. Montesinos-Castellanos, J.A. de
los Reyes-Heredia, Catal. Today 109 (2005) 33.
[
[
17] S. Korlann, B. D ´ı az, M.E. Bussell, Chem. Mater. 14 (2002) 4049.
18] B. D ´ı az, S.J. Sawhill, D.H. Bale, R. Main, D.C. Phillips, S. Korlann, R.
Self, M.E. Bussell, Catal. Today 86 (2003) 191.
4+
a greater proportion of high oxidation state species (Mo and
6
+
Mo ), whiletheconventionalmethodgeneratedalargerpropor-
δ+
tion of reduced species (Mo ). The results of catalytic activity
[19] H.K. Park, J.K. Lee, J.K. Yoo, E.S. Ko, D.S. Kim, K.L. Kim, Appl. Catal.
A: Gen. 150 (1997) 21.
4+
could be correlated with the presence at the surface of Mo ,
which shows an increase in the proportion of these species on
carbides prepared from the sulfate precursors. In consequence,
the activity of carbides obtained by the carbothermal method and
withsulfateprecursorswashigherthanthatofthesolidsobtained
by the conventional method and with nitrate precursors. How-
ever, no significant differences in catalytic activity were found
for the Ni-Mo carbides. From these results, it appears possible
to correlate the Mo4 content to HDS activity. The bimetallic
carbides obtained from sulfate precursors retained sulfur on the
surface, as shown by XPS and chemical analysis. Generally, the
carbides showed greater catalytic activity when they were pre-
sulfided, suggesting that the carbides with sulfided surfaces or
mixed carbo-sulfide species could be the active phase in HDS
on carbide catalysts. In the present work it is shown that the use
of sulfate precursors provides such mixed carbo-sulfide species
prior to the catalytic reaction, even without the need of presulfi-
dation, and that these phases are more active than those obtained
by presulfidation.
[
20] J.W. Logan, J.L. Heiser, K.R. McCrea, B.D. Gates, M.E. Bussell, Catal.
Lett. 56 (1998) 165.
21] J. Trawcynski, Appl. Catal. A: Gen. 197 (2000) 289.
22] G.M.K. Abotsi, A.W. Scaroni, Fuel Process. Technol. 22 (1989) 107.
[
[
[23] H. Farag, D.D. Whitehurst, K. Sakanishi, I. Mochida, Catal. Today 50
1999) 9.
24] B. Pawelec, R. Mariscal, J.L.G. Fierro, Appl. Catal. A: Gen. 206 (2001)
95.
25] M. Ferrari, S. Bosmans, R. Maggi, B. Delmon, P. Grange, Catal. Today 65
2001) 257.
[26] L. Volpe, M. Boudart, J. Solid St. Chem. 59 (1985) 348.
(
[
[
2
+
(
[
[
27] J.S. Lee, L. Volpe, H. Ribeiro, M. Boudart, J. Catal. 112 (1988) 44.
28] C. Pham-Huu, A.P.E. York, M. Ledoux, Ind. Eng. Chem. Res. 34 (1995)
1
107.
29] D. Mordenti, D. Brodzki, G. Dj e´ ga-Mariadassou, J. Solid St. Chem. 141
1998) 114.
[30] C. Liang, W. Ma, Z. Feng, C. Li, Carbon 41 (2003) 1833.
[
(
[
[
31] C. Sayag, G. Dj e´ ga-Mariadassou, Appl. Catal. A: Gen. 275 (2004) 15.
32] P. Liu, J.A. Rodriguez, J.T. Muckerman, J. Mol. Catal. A: Chem. 239 (2005)
116.
[
[
33] V. Sundaramurthy, A.K. Dalai, J. Adjaye, Catal. Today 125 (2007) 239.
34] B. Dhandapani, T. St. Clair, S.T. Oyama, Appl. Catal. A: Gen. 168 (1998)
219.
Acknowledgements
[35] A. Szymanska-Kolasa, M. Lewandowsky, C. Sayag, G. Dj e´ ga-
Mariadassou, Catal. Today 119 (2006) 7.
[
36] Power Dittraction File, International Center for Diffraction Data, Newtown
Square, PA, 1995.
37] M. Ledoux, G.P. Huu, J. Guille, H. Dunlop, J. Catal. 134 (1992) 383.
The authors would like to acknowledge financial support by
FONACIT (through Project G-2000001537) and the fine techni-
cal assistance of Carlos Bastidas (XRD) and Alberto Albornoz
[
[38] J. Aigler, J.L. Brito, P.A. Leach, M. Houalla, A. Proctor, N.J. Cooper, W.K.
Hall, D.M. Hercules, J. Phys. Chem. 97 (1993) 5699.
(XPS). E. P.-P. personally thanks the Surface Physicochemistry
[
[
[
39] L. Portela, J. Catal. 156 (1995) 243.
Laboratory and Dr. J.L. Brito, who have contributed in my scien-
tific education, the IVIC “Centro de Estudios Avanzados”, and
Julio A. Puello Polo.
40] M. Muhler, R. Schlogl, G. Ertl, J. Catal. 138 (1992) 413.
41] V. La Parola, G. Deganello, C.R. Tewell, A.M. Venezia, Appl. Catal. A:
Gen. 235 (2002) 171.
[42] X. Wang, U.S. Ozkan, J. Phys. Chem. B 109 (2005) 1882.
References
[43] J.-M. Manoli, P. Da Costa, M. Brun, M. Vrinat, F. Maug e´ , C. Potvin, J.
Catal. 221 (2004) 365.
[
[
[
[
[
44] D. Ferdous, A.K. Dalai, J. Adjaye, Fuel 85 (2006) 1286.
45] R.R. Chianelli, G. Berhault, Catal. Today 53 (1999) 357.
46] N.Y. Topsoe, H. Topsoe, J. Catal. 84 (1983) 386.
47] S.P.A. Louwers, R. Prins, J. Catal. 139 (1993) 525.
48] J. Laine, M. Labady, F. Severino, S. Yunes, J. Catal. 166 (1997) 384.
[
[
[
[
1] V. Babich, Fuel 82 (2003) 607.
2] E. Furimsky, Appl. Catal. A: Gen. 240 (2003) 1.
3] S.T. Oyama, Catal. Today 15 (1992) 179.
4] C.C. Yu, S. Ramanathan, B. Dhandapani, J.G. Chen, S.T. Oyama, J. Phys.
Chem. B 101 (1997) 512.