MIXED-LIGAND PALLADIUM(II) COMPLEXES
1569
4. I. A. Efimenko, N. A. Ivanova, and O. S. Erofeeva, Pro-
ceeding of the 21st Chugaev International Conference
on Coordination Chemistry (Kiev, 2003), p. 72 [in Rus-
sian].
5. O. N. Shishilov, T. A. Stromnova, and A. V. Churakov,
Zh. Neorg. Khim. 51 (4), 626 (2006) [Russ. J. Inorg.
Chem. 51 (4), 574 (2006)].
6. Aydin Tavman, Mustafa Hayvali, Hayati Filik, Emine
Kilic // Zh. Neorg. Khim. 51 (8), 1284 (2006) [Russ. J.
Inorg. Chem. 51 (8), 1198 (2006)].
7. L. F. Krylova and I. S. Kuprov, Zh. Neorg. Khim. 48 (8),
1288 (2003) [Russ. J. Inorg. Chem. 48 (8), 1168 (2003)].
α-NH2 group in chemical bond with a palladium(II)
ion. Inasmuch as the displacement of the chemical
shifts of signals from the C6 atom of lysine cannot be
evaluated (this signal is under the DMSO signal), the
participation of the ε-amino group of the ligand can be
suggested circumstantially (on the basis of the dis-
placement of the chemical shifts of the C5 signals rela-
tive to uncomplexed lysine). The significant displace-
ment of the chemical shift of the C5 signal from lysine
(∆δ = 2.10 ppm) can signify that the ε-amino group of
the ligand interacts with another palladium ion.
Thus, lysine is coordinated to a metal ion through its
carboxy oxygen atom and the nitrogen atom of the
α-amino group; the ε-amino group of lysine partici-
pates in intermolecular bonds.
8. A. K. Molodkin, N.Ya. Esina, E. K. Gnatik, and D. Ntisi,
Zh. Neorg. Khim. 42 (9), 1502 (1997) [Russ. J. Inorg.
Chem. 42 (9), 1368 (1997)].
9. A. K. Molodkin, N. Ya. Esina, M. N. Kurasova, and
E. E. Khaidarova, Zh. Neorg. Khim. 45 (11), 1823
(2000).
13
The ë-{1H} NMR spectra of complexes III and
IV show that all coordination sites of adenine are
involved in bonding to the metal. The maximum 10. Synthesis of Platinum-Group Metal Complexes metallov,
Ed. by I. I. Chernyaev (Nauka, Moscow, 1964), p. 64 [in
Russian].
11. I. G. Sayce, Talanta 15 (12), 1397 (1968).
12. A. Albert and E. Sergeant, Ionization Constants of Acids
and Bases (Wiley, New York, 1962; Khimiya, Moscow,
1964).
13. J. Bjerrum, Metal Ammine Formation in Aqueous Solu-
tion (Kopenhagen, 1957; Inostrannaya Literature, Mos-
cow, 1961).
changes in the chemical shifts relative to the uncom-
plexed ligand are observed for the C5 and C8 atoms of
adenine (10.08 and 8.27 ppm, respectively); this obser-
vation can indicate that the preferred coordination
mode of adenine to a palladium(II) ion is through the
heterocyclic N7 atom (possibly, because of proton
mobility, through the N9 atom). The amino group of
adenine is presumably hydrogen-bonded to the water
oxygen atom.
14. G. Charlot, Les Methodes de la Chimie Analytique:
Analyse Quantitative Minerale (Masson, Paris, 1961;
Khimiya, Moscow, 1969).
15. V. A. Klimova, in Fundamental Methods of Organic
Microanalysis (Moscow, 1967), p. 104 [in Russian].
With reference to the related literature [19] and
NMR spectroscopic data, we may suggest that adenine
interacts with palladium(II) through its heterocyclic
nitrogen atom (probably, the N7(N9) atom), while
lysine interacts through its carboxy and α-NH2 groups.
16. Y. Inomata, T. Inomata, and T. Moriwaki, Bull. Chem.
Soc. Jpn. 44, 365 (1971).
REFERENCES
17. G. F. Bol’shakov, N. A. Glebovskaya, and Z. G. Kaplan,
in Infrared Spectra and X-ray Diffraction Patterns of
Heteroorganic Compounds (Khimiya, Leningrad, 1967),
p. 168 [in Russian].
18. K. Nakamoto, Infrared Spectra of Inorganic and Coor-
dination Compounds (Wiley, New York, 1963; Mir,
Moscow, 1966).
1. K. B. Yatsimirskii, V. V. Mosin, A. N. Kozachkova, and
I. A. Efimenko, Koord. Khim. 19 (10), 793 (1993).
2. R. Ilavarasi, M. N. S. Rao, and M. R. Udupa, Indian J.
Chem., Sect. A: Inorg., Bio-Inorg., Phys., Theor. Anal.
Chem. 38 (2), 161 (1999).
3. A. K. Molodkin, N. Ya. Esina, and O. I. Andreeva, Zh.
Neorg. Khim. 49 (3), 468 (2004) [Russ. J. Inorg. Chem. 19. A. I. Stetsenko, K. I. Yakovlev, and S. A. D’yachenko,
49 (3), 417 (2004)].
Usp. Khim. 56 (9), 1533 (1987).
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 52 No. 10 2007