J. Zhang, L. Gao / Journal of Alloys and Compounds 505 (2010) 604–608
607
important for the electrocatalytic properties of PtNP–MWCNT
toward H2O2. Therefore, the PtNP–MWCNT composite displays bet-
ter electrocatalytic activity toward H2O2 than those of pristine
MWCNTs and PtNPs.
4. Conclusions
We have demonstrated an easy strategy to attach PtNPs onto
MWCNTs through pretreating MWCNTs in NH3 gas. Highly dis-
persed PtNPs on MWCNTs with small particle size (average size
is 1.9 nm) and higher electroactive surface area was successfully
fabricated. The composite exhibited better electrocatalytic activity
toward H2O2 than those of pristine MWCNTs and PtNPs. This kind
of PtNP–MWCNT composite is potentially useful in amperometric
enzyme biosensors.
Acknowledgments
Fig. 4. Cyclic voltammograms (20 mV s−1) in 20 mM K4[Fe(CN)6] and 0.2 M KCl at
GC electrodes modified with (a) PtNP–MWCNT, (b) pristine MWCNTs, (c) PtNPs
dispersed in 0.5 wt.% Nafion solution.
This work was supported by the National Key Basic Research
Development Program of China (2005CB623605), the Shanghai
Rising-Star Program (08QA14073), the Shanghai Talents Program
Foundation, and the Shanghai Institute of Ceramics (SCX200709).
electroactive surface area are achieved after PtNPs decorating on
MWCNTs. For PtNPs modified electrode, the electroactive surface
area is small, which may be due to the aggregation of PtNPs.
According to Yang et al. [30], excellent electrocatalytic activ-
ity of the electrode toward H2O2 implies that the electrode is
ometric enzyme biosensors, because H2O2 is the product of
oxidase-based enzyme reactions. Therefore, the electrocatalytic
activity of PtNP–MWCNT, pristine MWCNTs and PtNPs modi-
fied GC electrodes for detecting H2O2 is investigated and the CV
(third cycle) is shown in Fig. 5. For the pristine MWCNTs and
PtNPs modified electrodes, current responses are small with higher
oxidation/reduction potentials. For the PtNP–MWCNT composite
modified electrode, largely increased current signals with lower
oxidation/reduction overvoltage are observed, which means that
PtNP–MWCNT exhibits the best electrocatalytic activity toward
H2O2. The good electrocatalytic property of PtNP–MWCNT is
attributed to three reasons. Firstly, the excellent electron-transfer
ability of MWCNTs improves the electrocatalytic activity of PtNPs.
Secondly, the composite with small PtNPs highly dispersed on
MWCNTs avoids the aggregation of PtNPs and furthermore avoids
the electrode poisoning. Thirdly, the PtNP–MWCNT modified elec-
trode exhibits the highest electroactive surface area, which is
References
[1] C.X. Cai, J. Chen, Anal. Biochem. 332 (2004) 75–83.
[2] Q.C. Shi, T.Z. Peng, Y.N. Zhu, C.F. Yang, Electroanalysis 17 (2005) 857–861.
[3] G.C. Zhao, L. Zhang, X.W. Wei, Z.S. Yang, Electrochem. Commun. 5 (2003)
825–829.
[4] J. Wang, M. Musameh, Y.H. Lin, J. Am. Chem. Soc. 125 (2003) 2408–2409.
[5] M. Musameh, J. Wang, A. Merkoci, Y.H. Lin, Electrochem. Commun. 4 (2002)
743–746.
[6] P.J. Britto, K.S.V. Santhanam, P.M. Ajayan, Bioelectrochem. Bioenerg. 41 (1996)
121–125.
[7] M.N. Zhang, L. Su, L.Q. Mao, Carbon 44 (2006) 276–283.
[8] J. Xu, J.Y. Cao, X.B. Yu, Z.Q. Zou, D.L. Akins, H. Yang, J. Alloys Compd. 490 (2010)
88–92.
[9] A. Anson, E. Lafuente, E. Urriolabeitia, R. Navarro, A.M. Benito, W.K. Maser, M.T.
Martinez, J. Alloys Compd. 436 (2007) 294–297.
[10] K.B. Male, S. Hrapovic, Y.L. Liu, D.S. Wang, J.H.T. Luong, Anal. Chim. Acta 516
(2004) 35–41.
[11] J. Li, E.-H. Liu, W. Li, X.-Y. Meng, S.-T. Tan, J. Alloys Compd. 478 (2009) 371–374.
[12] J.M. Sieben, M.M.E. Duarte, C.E. Mayer, J. Alloys Compd. 491 (2010) 722–
728.
[13] A.O. Neto, A.Y. Watanabe, M. Brandalise, M.M. Tusi, R.M. de, S. Rodrigues, M.
Linardi, E.V. Spinace, C.A.L.G.O. Forbicini, J. Alloys Compd. 476 (2009) 288–
291.
[14] Z.Y. Wang, G. Chen, D.G. Xia, L.J. Zhang, J. Alloys Compd. 450 (2008) 148–151.
[15] I. Avila-Garcia, M. Plata-Torres, M.A. Dominguez-Crespo, C. Ramirez-Rodriguez,
E.M. Arce-Estrada, J. Alloys Compd. 434–435 (2007) 764–767.
[16] I.N. Leontyev, V.E. Guterman, E.B. Pakhomova, P.E. Timoshenko, A.V. Guter-
man, I.N. Zakharchenko, G.P. Petin, B. Dkhil, J. Alloys Compd. 500 (2010) 241–
246.
[17] I. Avila-Garcia, C. Ramirez, J.M. Hallen Lopez, E.M. Arce Estrada, J. Alloys Compd.
495 (2010) 462–465.
[18] G.X. Wang, H.M. Wu, D. Wexler, H.K. Liu, O. Savadogo, J. Alloys Compd. (2010),
doi:10.1016/j.jallcom.2010.04.236.
[19] U.B Suryavanshi, C.H. Bhosale, J. Alloys Compd. 476 (2009) 697–704.
[20] Q.F. Yi, L. Li, W.Q. Yu, Z.H. Zhou, X.P. Liu, G.R. Xu, J. Alloys Compd. 466 (2008)
52–58.
[21] M.A. Garcia-Contreras, S.M. Fernandez-Valverde, J.R. Vargas-Garcia, J. Alloys
Compd. (2010), doi:10.1016/j.jallcom.2010.03.206.
[22] S.A. Miscoria, G.D. Barrera, G.A. Rivas, Electroanalysis 14 (2002) 981–987.
[23] Q.J. Chi, S.J. Dong, Anal. Chim. Acta 278 (1993) 17–23.
[24] H. Sakslund, J. Wang, O. Hammerich, J. Electroanal. Chem. 374 (1994) 71–79.
[25] D. Ravi Shankaran, N. Ueheara, T. Kato, Biosens. Bioelectron. 18 (2003) 721–728.
[26] K. Balasubramanian, M. Burghard, Anal. Bioanal. Chem. 385 (2006) 452–468.
[27] X. Chu, D.X. Duan, G.L. Shen, R.Q. Yu, Talanta 71 (2007) 2040–2047.
[28] H. Tang, J.H. Chen, S.Z. Yao, L.H. Nie, G.H. Deng, Y.F. Kuang, Anal. Biochem. 331
(2004) 89–97.
[29] V. Lordi, N. Yao, J. Wei, Chem. Mater. 13 (2001) 733–737.
[30] M.H. Yang, Y.H. Yang, Y.L. Liu, G.L. Shen, R.Q. Yu, Biosens. Bioelectron. 21 (2006)
1125–1131.
[31] S. Hrapovic, Y.L. Liu, K.B. Male, J.H.T. Luong, Anal. Chem. 76 (2004) 1083–1088.
[32] M.H. Yang, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Biomaterials 27 (2006)
246–255.
[33] Y.H. Lin, X.L. Cui, C. Yen, C.M. Wai, J. Phys. Chem. B 109 (2005) 14410–14415.
[34] Z.H. Wen, S.Q. Ci, J.H. Li, J. Phys. Chem. C 113 (2009) 13482–13487.
Fig. 5. Cyclic voltammograms (50 mV s−1) for 5 mM H2O2 in phosphate buffer (pH
7.0) at GC electrodes modified with (a) PtNP–MWCNT, (b) pristine MWCNTs, (c)
PtNPs dispersed in 0.5 wt.% Nafion solution.