L.M. Rossi, G. Machado / Journal of Molecular Catalysis A: Chemical 298 (2009) 69–73
73
tion of cyclohexene and/or slow down its further hydrogenation to
cyclohexane.
Acknowledgments
We gratefully acknowledge the CENPES, CTPETRO-CNPq and
FAPERGS for financial support and fellowships. Also, we are par-
ticularly grateful to Prof. Jairton Dupont for the suggestions and
helpful discussions.
References
[1] R.L. Augustine, Heterogeneous Catalysis for the Synthetic Chemist, Marcel
Dekker, New York, 1996.
[
[
2] J.A. Widegren, R.G. Finke, J. Mol. Catal. A: Chem. 191 (2003) 187–207.
3] E.T. Silveira, A.P. Umpierre, L.M. Rossi, G. Machado, J. Morais, G.V. Soares,
I.J.R. Baumvol, S.R. Teixeira, P.F.P. Fichtner, J. Dupont, Chem. Eur. J. 10 (2004)
3
734–3740.
4] K. Pelzer, O. Vidoni, K. Philippot, B. Chaudret, V. Colliere, Adv. Funct. Mater. 13
2003) 118–126.
5] J.A. Widegren, M.A. Bennett, R.G. Finke, J. Am. Chem. Soc. 125 (2003)
0301–10310.
6] G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeira, J. Dupont, Chem. Eur. J.
(2003) 3263–3269.
7] K.S. Weddle, J.D. Aiken, R.G. Finke, J. Am. Chem. Soc. 120 (1998) 5653–5666.
[
[
[
[
Fig. 4. Selectivity to cyclohexene and initial rate of hydrogenation of benzene as a
function of hydrogen pressure at 75 C in BMI·BF4 (catalyst/substrate ratio = 1/3333).
(
◦
1
hexene was formed. Most 1,3-dialkylimidazolium ILs are stable
towards temperature and many organic and inorganic substances
9
[
26]. However, under certain reaction conditions, the cation and
[8] J.L. Pellegatta, C. Blandy, V. Collière, R. Choukroun, B. Chaudret, P. Cheng, K.
Philippot, J. Mol. Catal. A: Chem. 178 (2002) 55–61.
anion undergo degradation reactions and this might be the reason
for catalyst deactivation observed above 150 C [27]. On the other
hand, the deactivation of the catalytic system can also be due to the
poor solubility of the substrate in this phase. At 150 C the benzene
[9] X. Mu, D.G. Evans, Y. Kou, Catal. Lett. 97 (2004) 151–154.
◦
[
10] (a) A. Roucoux, J. Schulz, H. Patin, Adv. Synth. Catal. 354 (2003) 222–226;
(b) J. Schulz, A. Roucoux, H. Patin, Chem. Commun. (1999) 535–536;
(c) J. Schulz, A. Roucoux, H. Patin, Chem. Eur. J. 6 (2000) 618–624.
◦
[
11] X. Mu, J. Meng, Z.-C. Li, Y. Kou, J. Am. Chem. Soc. 127 (2005) 9694–9695.
is in the vapor phase, which decreases its miscibility in the ionic liq-
uid phase and, consequently, deactivates the catalytic system [28].
The influence of H2 pressure on the partial hydrogenation of
benzene over Ru(0)/BMI·BF4 catalytic system was also examined.
The plot of the initial rate of benzene conversion and the initial
selectivity to cyclohexene as a function of hydrogen pressure (Fig. 4)
showed the reaction rate being proportional to the pressure, which
meant that hydrogen mass transfer should govern the overall reac-
tion rate, and that the selectivity is not influenced by the hydrogen
pressure in the studied pressure range.
[
[
[
12] V. Mévellec, A. Roucoux, E. Ramirez, K. Philippot, B. Chaudret, Adv. Synth. Catal.
346 (2004) 72–76.
13] C.W. Scheeren, G. Machado, J. Dupont, P.F.P. Fichtner, S.R. Texeira, Inorg. Chem.
42 (2003) 4738–4742.
14] R.L.S. Ott, R.G. Finke, Coord. Chem. Rev. 251 (2007) 1075–1100.
[15] C. Zhao, H.-Z. Wang, N. Yan, C.-X. Xiao, X.-D. Mu, P.J. Dyson, Y. Kou, J. Catal. 250
2007) 33–40.
(
[
16] J. Dupont, G.S. Fonseca, A.P. Umpierre, P.F.P. Fichtner, S.R. Teixeira, J. Am. Chem.
Soc. 124 (2002) 4228–4229.
[17] L.M. Rossi, J. Dupont, G. Machado, P.F.P. Fichtner, C. Radtke, I.J.R. Baumvol, S.R.
Teixeira, J. Braz. Chem. Soc. 15 (2004) 904–910.
[
18] L.M. Rossi, G. Machado, P.F.P. Fichtner, S.R. Teixeira, J. Dupont, Catal. Lett. 92
2004) 149–155.
(
[
19] J. Huang, T. Jiang, B. Han, H. Gao, Y. Chang, G. Zhao, W. Wu, Chem. Commun.
(2003) 1654–1655.
4
. Conclusion
[20] A. Nowicki, V. Le Boulaire, A. Roucoux, Adv. Synth. Catal. 349 (2007) 2326–
2
330.
In summary, the Ru(0) nanoparticles prepared by a very sim-
ple method based on H2 reduction of the commercially available
[
21] J. Dupont, P.A.Z. Suarez, C.S. Consorti, R.F. de Souza, Org. Synth. 79 (2002)
236–243.
22] B.K. Sweeny, D.G. Peters, Electrochem. Commun. 3 (2001) 712–715.
23] B.K. Teo, H. Zhang, in: D.L. Feldheim, C.A. Foss Jr. (Eds.), Metal Nanoparticles:
Synthesis, Characterization and Applications, Marcel Dekker, New York, 2002
(Chapter 3).
24] B.J. Hornstein, J.D. Aiken, R.G. Finke, Inorg. Chem. 41 (2002) 1625–1638;
J.A. Widegren, R.G. Finke, J. Mol. Catal. A: Chem. 198 (2003) 317–341;
P. Foley, R. DiCosimo, G.M. Whitesides, J. Am. Chem. Soc. 102 (1980) 6713–6725.
[25] L. Lin, R.G. Finke, Inorg. Chem. 33 (1994) 4891–4910.
26] J. Dupont, J. Spencer, Angew. Chem. Int. Ed. 43 (2004) 5296–5297.
27] J. Dupont, S.M. Silva, R.F. Souza, Catal. Lett. 77 (2001) 131–133.
[
[
precursor RuO ·3H O, which avoids the use of an organometallic
2
2
precursor, has proved to be an efficient catalyst for hydrogenation
of benzene and other benzene derivatives. We also demonstrated
by poisoning experiments and TEM that the catalyst behaves as
an heterogeneous metal nanoparticle catalyst. The partially hydro-
genated product cyclohexene was also detected in certain reaction
conditions. The maximum selectivity to cyclohexene (65% at 0.3%
[
[
[
[
◦
of benzene conversion) was reached at 120 C and 4 atm hydrogen
28] G.S. Fonseca, J.B. Domingos, F. Nome, J. Dupont, J. Mol. Catal. A: Chem. 248
pressure in the BMI·BF4 ionic liquid biphasic system. Although the
maximum yield of cyclohexene is too low for practical applications,
the use of reaction modifiers such as methanol [29], ZnSO4 [30] or
NaOH [31] has been suggested to enhance selectivity to cyclohexene
and will the subject of further investigation in our catalytic system.
Such modifiers to enhance the selectivity must stimulate desorp-
(2006) 10–16.
[
[
[
29] J. Struijk, J.J.F. Scholten, Appl. Catal. A: Gen. 82 (1992) 277–287.
30] S. Xie, M. Qiao, H. Li, W. Wang, J.F. Deng, Appl. Catal. A: Gen. 176 (1999) 129–134.
31] (a) S.-C. Hu, Y.-W. Chen, Ind. Eng. Chem. Res. 36 (1997) 5153;
(b) S.-C. Hu, Y.-W. Chen, Ind. Eng. Chem. Res. 40 (2001) 3127–3132;
(c) S.-C. Hu, Y.-W. Chen, Ind. Eng. Chem. Res. 40 (2001) 6099–6104;
(
d) S.-C. Hu, Y.-W. Chen, J. Chem. Technol. Biotechnol. 76 (2001) 954–958.