Journal of The Electrochemical Society, 158 ͑2͒ D68-D71 ͑2011͒
ported here.35 They distinguish between different surface conditions
Acknowledgments
D71
partly by the magnitude of the measured capacitance, which is ex-
pected to be in the nF cm2, F cm−2, and mF cm−2 range for a space
charge layer, Helmholtz layer, and oxide layer, respectively.35,36
Thus, a best-fit capacitance value in the F cm−2 range is considered
as evidence of a Helmholtz layer in potential regimes and at dopant
conditions where the surface is not oxidized and no space charge
layer forms. The results in Table I are consistent with this criterion,
supporting our assertion that Si oxide does not form in the solutions
studied here.
This research was supported by U.S. Army grant no. W911NF-
05-1-0339 and the Center for Advanced Materials Processing
͑CAMP͒ at Clarkson University.
Clarkson University assisted in meeting the publication costs of this ar-
ticle.
References
1. Clean Electricity from Photovoltaics, M. D. Archer and R. Hill, Editors, Imperial
College Press, London ͑2001͒.
In addition, Searson and Zhang observe that the charge transfer
resistance ͑Rct͒ increases from 101 to 103 ⍀ cm2 at potentials where
Si dissolution occurs from 104 to 105⍀ cm2 at more cathodic poten-
tials, such as those studied here, where the surface is likely
͑7.51 ϫ 104 ⍀ cm2͒ is consistent with the results of Searson and
Zhang. These results are consistent with the general observation that
H-terminated Si is much more stable and unreactive than
O-terminated Si, yielding somewhat higher Rct at more cathodic
2. R. A. Johnson, P. R. de la Houssaye, C. E. Chang, P. F. Chen, M. E. Wood, G. A.
Garcia, I. Lagnado, and P. M. Asbeck, IEEE Trans. Electron Devices, 45, 1047
͑1998͒.
3. L. B. Chen, K. Wang, X. H. Xie, and J. Y. Xie, Electrochem. Solid-State Lett., 9,
A512 ͑2006͒.
4. T. L. Kulova, A. M. Skundin, Y. V. Pleskov, E. I. Terukov, and O. I. Kon’kov, J.
Electroanal. Chem., 600, 217 ͑2007͒.
5. S. Guruvenket, M. Azzi, D. Li, J. A. Szpunar, L. Martinu, and J. E. Klemberg-
Sapieha, Surf. Coat. Technol., 204, 3358 ͑2010͒.
6. I. M. Dharmadasaz and J. Haigh, J. Electrochem. Soc., 153, G47 ͑2006͒.
7. Standard Potentials in Aqueous Solution, A. J. Bard, R. Parsons, and J. Jordan,
Editors, Marcel Dekker, New York ͑1985͒.
The galvanic Si thin films deposited here can be compared with
Si thin films electrodeposited at room temperature from organic
This is complicated by the wide variation in reported results be-
tween different research groups, which makes comparisons difficult.
tion from organic solvents is limited to deposits ഛ250 nm thick.20
In addition, it has been suggested that Si films electrodeposited from
organic solvents are always porous and oxidize rapidly upon ambi-
ent exposure.15 Si thin films electrodeposited from RTILs onto flat
substrates appear to have been limited to date to a thickness of
several hundred nanometers. Regardless of the veracity of these gen-
eralizations, thick and compact Si films have not been grown to date
by room temperature electrodeposition. In addition, many of the
reported Si films are contaminated by impurity elements originating
from the solvent. The galvanic Si films reported here suffer from
many of these same issues. The primary advantages of the current
method include its simplicity, the modest cost and toxicity of the
reagents employed, and the ability to grow thick 12 m Si films.
8. G. M. Rao, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 127, 1940 ͑1980͒.
9. R. C. de Matthei, D. Elwell, and R. S. Feigelson, J. Electrochem. Soc., 128, 1712
͑1981͒.
10. R. Boen and J. Bouteillon, J. Appl. Electrochem., 13, 277 ͑1983͒.
11. K. L. Carleton, J. M. Olson, A. Kibbler, and R. S. Feigelson, J. Electrochem. Soc.,
130, 782 ͑1983͒.
12. A. K. Agrawal and A. E. Austin, J. Electrochem. Soc., 128, 2292 ͑1981͒.
13. C. H. Lee and F. A. Kroger, J. Electrochem. Soc., 129, 936 ͑1982͒.
14. P. R. Sarma, T. R. R. Mohan, S. Venkatachalam, J. Singh, and V. P. Sundesingh,
Mater. Sci. Eng., B, 15, 237 ͑1992͒.
15. J. P. Nicholson, J. Electrochem. Soc., 152, C795 ͑2005͒.
16. Y. Nishimura and Y. Fukunaka, Electrochim. Acta, 53, 111 ͑2007͒.
17. T. Munisamy and A. J. Bard, Electrochim. Acta, 55, 3797 ͑2010͒.
18. S. Z. el Abedin, N. Borissenko, and F. Endres, Electrochem. Commun., 6, 510
͑2004͒.
19. N. Borissenko, S. Z. el Abedin, and F. Endres, J. Phys. Chem. B, 110, 6250 ͑2006͒.
20. S. Z. el Abedin and F. Endres, Acc. Chem. Res., 40, 1106 ͑2007͒.
21. R. Al-Salman, S. Z. el Abedin, and F. Endres, Phys. Chem. Chem. Phys., 10, 4650
͑2008͒.
22. J. Mallet, M. Molinari, F. Martineau, F. Delavole, P. Fricoteaux, and M. Troyon,
Nano Lett., 8, 3468 ͑2008͒.
23. Y. Nishimura, Y. Fukunaka, T. Nishida, T. Nohira, and R. Hagiwara, Electrochem.
Solid-State Lett., 11, D75 ͑2008͒.
24. S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, and H. Matsuda,
Electrochim. Acta, 53, 35 ͑2007͒.
25. C. Carraro, R. Maboudian, and L. Magagnin, Surf. Sci. Rep., 62, 499 ͑2007͒.
26. S. Sapra, H. Li, Z. Wang, and I. I. Suni, J. Electrochem. Soc., 152, B193 ͑2005͒.
27. D. S. Lashmore, Plat. Surf. Finish., 72, 36 ͑1985͒.
28. F. J. Monteiro and D. H. Ross, Trans. Inst. Met. Finish., 62, 155 ͑1985͒.
29. D. A. Hutt, C. Q. Liu, P. P. Conway, D. C. Whalley, and S. H. Mannan, IEEE
Trans. Compon. Packag. Technol., 25, 87 ͑2002͒.
30. K. Azumi, S. Egoshi, S. Kawashima, and Y. Koyama, J. Electrochem. Soc., 154,
D220 ͑2007͒.
31. K. W. Kolasinski, Phys. Chem. Chem. Phys., 5, 1270 ͑2003͒.
32. C. da Fonseca, F. Ozanam, and J. N. Chazalviel, Surf. Sci., 365, 1 ͑1996͒.
33. A. Belaidi, M. Safi, F. Ozanam, J. N. Chazalviel, and O. Gorochov, J. Electrochem.
Soc., 146, 2659 ͑1999͒.
Conclusions
Galvanic deposition of Si onto 6061 Al alloy occurs from solu-
tions containing 10 mM HF, 1 mM HNO3, and 20 mM Na2SiF6. Si
films about 12 m thick are formed after 6 h of deposition. High
resolution SEM indicates that the Si films are nanoporous, with pore
sizes ranging from 3 to 8 nm. For this reason, the Si film appears to
oxidize rapidly upon sample emersion. However, in situ measure-
ments by EIS on degenerate Si yield capacitance and charger trans-
fer resistance ͑Rct͒ values consistent with an H-terminated Si surface
rather than an oxidized surface. This is consistent with previously
reported studies of Si in dilute HF by infrared spectroscopy, con-
firming that Si is not oxidized in situ. Elemental analysis by EDX
demonstrate that the as-deposited film contains 1–3 atom % Al, 3–6
atom % Cu, and 90–95 atom % Si.
34. J. N. Chazalviel, A. Belaidi, M. Safi, F. Maroun, B. H. Erne, and F. Onazam,
Electrochim. Acta, 45, 3205 ͑2000͒.
35. P. C. Searson and X. G. Zhang, J. Electrochem. Soc., 137, 2539 ͑1990͒.
36. J. C. Lin, C. M. Lai, W. D. Jehng, K. L. Huseh, and S. L. Lee, J. Electrochem. Soc.,
155, D436 ͑2008͒.
Downloaded on 2014-06-13 to IP 129.89.24.43 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).