Journal of The Electrochemical Society, 155 ͑7͒ H469-H473 ͑2008͒
H473
Table II. Element value of equivalent circuit required for best fitting of impedance spectra in Fig. 8b.
CPEox
TiNx–W
Rs ͑⍀͒
Rox ͑⍀͒
Yox ͑⍀−1
͒
␣
Cox ͑F͒
Rcorr ͑⍀͒
Cdl ͑nF͒
ox
N = 20
N = 30
N = 40
N = 60
N = 80
24.26
25.84
25.28
24.27
24.02
128.1
122.4
295.5
273.4
257.5
255.9
264.1
168.4
194.7
208.9
0.9058
0.9235
0.9312
0.9296
0.9323
179.35
198.75
134.92
155.92
168.95
1429
1615
489.2
474.9
463.4
2.715
2.875
2.276
1.778
1.371
Acknowledgment
verify that the formation of TiO2 and the galvanic corrosion of the
TiNx films decrease with increasing N2 flow rate because nitrogen
inhibits the electron release from the TiNx film to the W film, as
shown in Table II. The galvanic corrosion rate of the TiNx films,
shown in Table I, is consistent with the results of Fig. 8b. The Cdl
value, corresponding to the generation of electrons, becomes
This work was supported by the National Science Council of
Taiwan ͑grant no. NSC 96-221-E-006-125 and NSC 97-2623-7-006-
012-ET͒. The authors thank the National Cheng Kung University,
Tainan, Taiwan for its technical support.
National Chen Kung University assisted in meeting the publication costs
of this article.
smaller, resulting from the reduction of Icorr
.
After a further increase of the N2 flow rate in the range of
40–80 sccm, the TiNx film acts as a cathode ͑Eq. 6͒ compared to the
W metals in the TiNx–W electrochemical system. The potential dif-
ference between the TiNx and W films is larger and increases with
increasing N2 flow rate; therefore, the galvanic corrosion of the TiNx
films is faster and tends to accelerate. Because of the increasing
reduction of Ti4+ ions to Ti metal, the formation of TiO2 reduces
because it accelerates corrosion to replenish Ti4+ ions ͑Eq. 9͒. Simi-
larly, the increase of Cox and the decrease of Rox and Rcorr verify the
reduction of the TiO2 thickness and the increase in the corrosion rate
of the TiNx films with increasing N2 flow rate, as shown in Table II.
Therefore, the elements of the circuit in the TiNx–W electrochemi-
cal system represent their physical meanings. Using the parameters
of impedance spectroscopy, the mechanism of the galvanic corro-
sion between the W metals and the TiNx barriers can be investi-
gated.
References
1. T. Kaga, M. Ohkura, F. Murai, N. Yokoyama, and E. Takeda, J. Vac. Sci. Technol.
B, 13, 2329 ͑1995͒.
2. S. B. Herner, S. A. Desai, A. Mak, and S. G. Ghanayem, Electrochem. Solid-State
Lett., 2, 398 ͑1999͒.
3. A. C. Westerheim, J. M. Bulger, C. S. Whelan, T. S. Sriram, L. J. Elliott, and J. J.
Maziarz, J. Vac. Sci. Technol. B, 16, 2729 ͑1998͒.
4. C. Faltermeier, C. Goldberg, M. Jones, A. Upham, D. Manger, G. Peterson, J. Lau,
and A. Kaloyeros, J. Electrochem. Soc., 144, 1002 ͑1997͒.
5. P. J. Ireland, Thin Solid Films, 304, 1 ͑1997͒.
6. H. L. Chang and P. R. Jeng, Jpn. J. Appl. Phys., Part 1, 39, 4378 ͑2000͒.
7. S. Parikh, L. Akselrod, J. Gardner, K. Armstrong, and N. Parekh, Thin Solid Films,
320, 26 ͑1998͒.
8. J. Wu, Y. L. Wang, J. Dun, Y. L. Wu, H. Zhang, and A. Wang, J. Vac. Sci. Technol.
B, 17, 2300 ͑1999͒.
9. S. B. Herner, Y. Tanaka, H. Zhang, and S. G. Ghanayem, J. Electrochem. Soc.,
147, 1982 ͑2000͒.
10. H. L. Chang, F. L. Juang, and C. T. Kuo, Jpn. J. Appl. Phys., Part 1, 41, 2906
͑2002͒.
11. S. H. Kim, E. S. Hwang, S. Y. Han, S. H. Pyi, N. Kawk, H. Sohn, J. Kim, and G.
B. Choi, Electrochem. Solid-State Lett., 7, G195 ͑2004͒.
12. Y. Nakasaki, K. Suguro, and M. Kashiwagi, J. Appl. Phys., 64, 3263 ͑1988͒.
13. P. Dekker, P. J. Van der Put, H. J. Veringa, and J. Schoonman, J. Electrochem. Soc.,
141, 787 ͑1994͒.
14. C. Yu, S. Poon, Y. Limb, T. K. Yu, and J. Klein, in Proceedings of the VLSI
Multilevel Interconnection Conference, Santa Clara, CA, p. 144 ͑1994͒.
15. M. Rutten, P. Feeney, R. Cheek, and W. Landers, in Proceedings of the VLSI
Multilevel Interconnection Conference, Santa Clara, CA, p. 491 ͑1995͒.
16. J. Lee, J. Kim, and H. Shin, Thin Solid Films, 320, 15 ͑1998͒.
17. C. C. Hung, Y. S. Wang, W. H. Lee, S. C. Chang, and Y. L. Wang, Electrochem.
Solid-State Lett., 10, H127 ͑2007͒.
Conclusions
In conclusion, the N content of the TiNx films affected not only
the physical film properties but also the chemical activity in the
WCMP process. The mechanism of galvanic corrosion in the
TiNx–W electrochemical system was investigated. An equivalent
circuit simulated using EIS data was built to characterize the surface
reaction between the W metals and the TiNx films. With an increas-
ing N2 flow rate in the PVD-TiNx process, the potential difference
between the W metals and the TiNx films in the WCMP slurry
changes to negative from positive, while the role of the TiNx film
changes to a cathode from an anode. The results demonstrate that
the N element content affects the formation of titanium-metal oxi-
dation and the galvanic corrosion between the W metals and the
TiNx films. In order to have a robust W metallization process, the N
content of the TiNx barriers should be optimized to achieve a com-
promise between the barrier properties and chemical stability.
18. C. C. Hung, W. H. Lee, Y. S. Wang, S. C. Chang, and Y. L. Wang, Electrochem.
Solid-State Lett., 10, D100 ͑2007͒.
19. S. Kondo, N. Sakuma, Y. Homma, and N. Ohashi, Jpn. J. Appl. Phys., Part 1, 39,
6216 ͑2000͒.
20. R. Kröger, M. Eizenberg, C. Marcadal, and L. Chen, J. Appl. Phys., 91, 5149
͑2002͒.
21. S. Ikeda, J. Palleau, J. Torres, B. Chenevier, N. Bourhila, and R. Madar, J. Appl.
Phys., 86, 2300 ͑1999͒.
22. S. Ikeda, J. Palleau, J. Torres, B. Chenevier, N. Bourhila, and R. Madar, Solid-State
Electron., 43, 1063 ͑1999͒.
23. D. H. Kim and B. Y. Kim, Jpn. J. Appl. Phys., Part 2, 38, L461 ͑1999͒.
24. S. H. Whang, J. K. Kim, J. W. Park, D. H. Kim, D. L. Cho, and W. J. Lee, Jpn. J.
Appl. Phys., Part 1, 40, 265 ͑2001͒.
25. B. K. Lim, H. S. Park, A. K. H. See, E. Z. Liu, and S. H. Wu, J. Vac. Sci. Technol.
B, 20, 2219 ͑2002͒.
Downloaded on 2015-06-19 to IP 128.192.114.19 address. Redistribution subject to ECS terms of use (see ecsdl.org/site/terms_use) unless CC License in place (see abstract).