Article
Organometallics, Vol. 29, No. 21, 2010 4915
12e
species: e.g., 6. They also showed that Cp*Ga: can co-
Chart 1
2
ordinate the Zn cation to give the homoleptic complex
þ
2
þ 12e,15
[Zn(GaCp*)4] . Moreover, Fedushkin et al. prepared
the paramagnetic compound 7, the unpaired electron of
which was shown to be located on the Zn heterocycle by
1
6
EPR and computational studies. To the best of our knowl-
edge, no other examples of complexes bearing covalent
gallium-group 2 metal bonds are known, though one
report by Roesky et al. detailed several weak donor-acceptor
compounds involving Cp*Ga: as the Lewis basic ligand, viz.
[
(Cp*Ga) MCp* (THF) ] (M = Ca, Sr, Ba; m = 1, 2;
m 2 n
1
7
n=0, 1). Herein, we detail our efforts to expand the ranks
of compounds containing bonds between gallium and group 2
or group 12 metals. The preparation and structural character-
ization of the first Ga-M (M=Cd, Sr, Ba) covalently bonded
complexes is reported.
plane). Indeed, the ability of the anionic ligand to form
strong polar-covalent bonds with such an array of other
metals is derived from its significant nucleophilicity.
Of most relevance to this study are compounds 2-5
(Chart 1), which incorporate 1 and which represent the first
examples of complexes bearing bonds between gallium and
Results and Discussion
9
i
9e
either group 2 or 12 metals. Subsequent to the reports on
these compounds, several other studies describing Ga-Zn-
bonded species were forthcoming. These included the work
of Fischer et al., who demonstrated that the neutral six-
membered gallium(I) heterocycle [:Ga(Nacnac)] can oxida-
tively insert into Zn-Cl or Zn-C bonds to give zinc gallyl
Group 2 Chemistry. Previously, we showed that the reac-
tions of [K(tmeda)][1] with MI
yield the metal gallyls 2 and 3 but, instead, they give
(M=Mg, Ca) in THF do not
2
9
intractable product mixtures. The eventual preparation of
i
2 and 3 was achieved by the stepwise reduction of the para-
•
magnetic gallium(III) iodide complex [I Ga(DAB )] with
2
9i
either elemental magnesium or calcium in THF. In con-
•
(9) (a) Jones, C.; Stasch, A.; Woodul, W. D. Chem. Commun. 2009,
113. (b) Liddle, S. T.; McMaster, J.; Mills, D. P.; Blake, A. J.; Jones, C.;
trast, reactions between [I Ga(DAB )] and strontium or
2
Woodul, W. D. Angew. Chem., Int. Ed. 2009, 48, 1077. (c) Liddle, S. T.;
Mills, D. P.; Gardner, B. M.; McMaster, J.; Jones, C.; Woodul, W. D. Inorg.
Chem. 2009, 48, 3520. (d) Jones, C.; Mills, D. P.; Rose, R. P.; Stasch, A.
Dalton Trans. 2008, 4395. (e) Jones, C.; Rose, R. P.; Stasch, A. Dalton
Trans. 2007, 2997. (f) Arnold, P. L.; Liddle, S. T.; McMaster, J.; Jones, C.;
Mills, D. P. J. Am. Chem. Soc. 2007, 129, 5360. (g) Green, S. P.; Jones, C.;
Mills, D. P.; Stasch, A. Organometallics 2007, 26, 3424. (h) Green, S. P.;
Jones, C.; Lippert, K.-A.; Mills, D. P.; Stasch, A. Inorg. Chem. 2006, 45,
barium metal did not give analogues of 3 but instead
afforded the partially reduced gallium(II) dimer product
[
of the group 2 metals and that of the lanthanide (Ln) metals
{Ga(DAB)} ]. As there are parallels between the chemistry
2
•
in the þ2 oxidation state, the reduction of [I Ga(DAB )] with
2
elemental Sm, Eu, or Yb was also attempted. Again, complex
product mixtures, not including lanthanide gallyl products,
7
242. (i) Jones, C.; Mills, D. P.; Platts, J. A.; Rose, R. P. Inorg. Chem. 2006,
5, 3146. (j) Baker, R. J.; Jones, C.; Mills, D. P.; Murphy, D. M.; Hey-
9
a
were formed in these reactions. Moreover, lanthanide
4
Hawkins, E.; Wolf, R. Dalton Trans. 2006, 64. (k) Jones, C.; Mills, D. P.;
Rose, R. P. J. Organomet. Chem. 2006, 691, 3060. (l) Aldridge, S.; Baker,
R. J.; Coombs, N. D.; Jones, C.; Rose, R. P.; Rossin, A.; Willock, D. J. Dalton
Trans. 2006, 3313. (m) Aldridge, S.; Baker, R. J.; Coombs, N. D.; Jones, C.;
Rose, R. P.; Rossin, A.; Willock, D. J. Dalton Trans. 2006, 3313. (n) Baker,
R. J.; Jones, C.; Murphy, D. M. Chem. Commun. 2005, 1339. (o) Baker, R. J.;
Jones, C.; Kloth, M. Dalton Trans. 2005, 2106. (p) Baker, R. J.; Jones, C.;
Mills, D. P.; Kloth, M.; Murphy, D. M. Chem. Eur. J. 2005, 11, 2972.
gallyls were not isolated from reactions of [K(tmeda)][1]
0
0
with LnI in THF. However, when N,N,N ,N -tetramethy-
2
lethylenediamine (tmeda) was added to the latter reactions,
the octahedral lanthanide gallyl complexes trans-[Ln{Ga-
(DAB)} (tmeda) ] (Ln = Sm, Eu, Yb), were obtained in
moderate yields.
2 2
9
a,18
Given this success, we decided to revisit
(
q) Baker, R. J.; Jones, C.; Kloth, M.; Platts, J. A. Organometallics 2004, 23,
811. (r) Baker, R. J.; Jones, C.; Kloth, M.; Platts, J. A. Angew. Chem., Int.
Ed. 2003, 43, 2660. (s) Baker, R. J.; Jones, C.; Platts, J. A. Dalton Trans.
003, 3673.
10) (a) Kuhn, N.; Al-Sheikh, A. Coord. Chem. Rev. 2005, 249, 829.
b) Kirmse, W. Eur. J. Org. Chem. 2005, 237. (c) Herrmann, W. A. Angew.
the aforementioned unsuccessful reactions between group 2
metal iodides and [K(tmeda)][1], but including tmeda as a
coreactant.
4
2
(
Treatment of toluene suspensions of MI (M=Ca, Sr, Ba)
2
(
with 2 equiv of [K(tmeda)][1] in the presence of an excess of
tmeda afforded low to good yields of the bis(gallyl) metal
complexes 8-10 (Scheme 1) after recrystallization of the
crude products from diethyl ether. The isolated yield de-
creases with the molecular weight of the group 2 metal
involved. This is possibly due to the expected increasing
Chem., Int. Ed. 2002, 41, 1290. (d) Carmalt, C. J.; Cowley, A. H. Adv. Inorg.
Chem. 2000, 50, 1. (e) Bourissou, D.; Guerret, O.; Gabai, F. B.; Bertrand, G.
Chem. Rev. 2000, 100, 39.
(
11) Hardman, N. J.; Eichler, B. E.; Power, P. P. Chem. Commun.
000, 1991.
12) (a) Prabusankar, G.; Gemel, C.; Parameswaran, P.; Flener, C.;
Frenking, G.; Fischer, R. A. Angew. Chem., Int. Ed. 2009, 48, 5526.
2
(
(
b) Kempter, A.; Gemel, C.; Fischer, R. A. Inorg. Chem. 2008, 47, 7279.
(
c) Prabusankar, G.; Kempter, A.; Gemel, C.; Schr €o ter, M.-K.; Fischer, R. A.
Angew. Chem., Int. Ed. 2008, 47, 7234. (d) Kempter, A.; Gemel, C.;
Cadenbach, T.; Fischer, R. A. Organometallics 2007, 26, 4257. (e) Kempter,
A.; Gemel, C.; Cadenbach, T.; Fischer, R. A. Inorg. Chem. 2007, 46, 9481.
(15) N.B. Two cluster compounds, [MoZn
4
Ga
4 4 4
Me Cp* ] and
[MoZn Ga Me Cp*
8
2
6
4
], which contain Zn-Ga interactions have been
reported: Cadenbach, T.; Bollermann, T.; Gemel, C.; Fernandez, I.; von
Hopffgarten, M.; Frenking, G.; Fischer, R. A. Angew. Chem., Int. Ed.
2008, 47, 9150.
(
f) Kempter, A.; Gemel, C.; Hardman, N. J.; Fischer, R. A. Inorg. Chem.
2
2
006, 45, 3133. (g) Kempter, A.; Gemel, C.; Fischer, R. A. Inorg. Chem.
005, 44, 163. (h) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P.
(16) Fedushkin, I. L.; Lukoyanov, A. N.; Ketkov, S. Y.; Hummert,
J. Am. Chem. Soc. 2003, 125, 2667. (i) Burford, N.; Ragogna, P. J.;
Robertson, K. N.; Cameron, S. T. J. Am. Chem. Soc. 2002, 124, 382.
M.; Schumann, H. Chem. Eur. J. 2007, 13, 7050.
(17) Wieko, M.; Roesky, P. W.; Nava, P.; Ahlrichs, R.; Konchenko,
S. N. Chem. Commun. 2007, 927.
(18) N.B. Several other complexes containing f-block-metal-gallium
bonds have been reported. See: (a) Reference 9b. (b) Reference 9c.
(c) Reference 9f. (d) Wieko, M.; Roesky, P. W. Organometallics 2007,
26, 4846. (e) Minasian, S. G.; Krinsky, J. L.; Rinehart, J. D.; Copping, R.;
Tyliszczak, T.; Janousch, M.; Shuh, D. K.; Arnold, J. J. Am. Chem. Soc.
2009, 131, 13767.
(
j) Hardman, N. J.; Power, P. P. Chem. Commun. 2001, 1184.
13) Jones, C.; Junk, P. C.; Platts, J. A.; Stasch, A. J. Am. Chem. Soc.
006, 128, 2206.
14) (a) Moxey, G. J.; Jones, C.; Stasch, A.; Junk, P. C.; Deacon,
(
2
(
G. B.; Woodul, W. D.; Drago, P. R. Dalton Trans. 2009, 2630. (b) Jones,
C.; Stasch, A.; Moxey, G. J.; Junk, P. C.; Deacon, G. B. Eur. J. Inorg. Chem.
2009, 3593. (c) Green, S. P.; Jones, C.; Stasch, A. Inorg. Chem. 2007, 46, 11.