Co Particle Size and the CO Hydrogenation Reaction
J. Phys. Chem. B, Vol. 113, No. 31, 2009 10727
4
. Conclusions
(9) Soled, S. L.; Iglesia, E.; Fiato, R. A.; Baumgartner, J. E.; Vroman,
H.; Miseo, S. Top. Catal. 2003, 26, 101.
Monodispersed cobalt nanoparticles prepared from colloidal
(10) Iglesia, E. Appl. Cat. A: Gen. 1997, 161, 59.
(
(
11) Khodakov, A. Y. J. Catal. 1997, 68, 16.
12) Niemel a¨ , M. K.; Backman, L.; Krause, A. O. I.; Vaara, T. Appl.
chemistry methods have been used to study the structure
sensitivity of the CO hydrogenation reaction. Powder samples
supported on silicon oxide and on gold have been prepared using
Co nanoparticles from the same batch. The chemical state of
the nanoparticles and the changes occurring during reaction were
investigated using in situ soft X-ray absorption spectroscopy at
atmospheric pressure and temperature up to 330 °C. We have
shown that the surfactant ligands can be readily removed by
Catal. A: Gen. 1997, 156, 319.
(13) Martinez, A.; Prieto, G. J. Catal. 2007, 245, 470.
(
14) Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai,
G. A. J. Phys. Chem. B 2005, 109, 2192.
(15) Zheng, N.; Stucky, G. D. J. Am. Chem. Soc. 2006, 128, 14278.
(16) Herranz, T.; Rojas, S.; P e´ rez-Alonso, F. J.; Ojeda, M.; Terreros,
P.; Fierro, J. L. G. Appl. Catal. A: Gen. 2006, 308, 19.
17) Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.;
(
Holewijn, J. E.; Xu, X.; Kapteijn, F.; van Dillen, A. J.; de Jong, K. P.
J. Am. Chem. Soc. 2006, 128, 3956.
2
heating in H and that the nanoparticles are in the metallic state
and covered with CO during methanation. Our electron micros-
copy studies have shown that the particles do not sinter as a
result of the heating treatments to remove surfactants, or during
the reaction.
We have also shown that the methanation activity decreases
with particle size below 10 nm and that this reduction is not
due to carbon deposition, sintering or oxidation by water vapor.
Notably, we have shown that the activation energy for metha-
nation remains constant with particle size, indicating that the
rate-limiting step is unchanged. Hydrogen-deuterium exchange
experiments show that the specific activity in the HD production
decreases also when the particle size decreases below 10 nm
(18) Yu, Z.; Borg, O.; Chen, D.; Enger, B. C.; Froseth, V.; Rytter, E.;
Wigum, H.; Holmen, A. Catal. Lett. 2006, 109, 43.
(
19) Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001,
2
91, 2115.
(20) Bazin, D.; Kovacs, I.; Guczi, L.; Parents, P.; Laffon, C.; de Groot,
F.; Ducreaux, O.; Lynch, J. J. Catal. 2000, 189, 456.
(21) Bazin, D.; Guczi, L. Appl. Catal. A: Gen. 2001, 213, 162.
(22) Herranz, T.; Deng, X.; Guo, J.; Cabot, A.; Alivisatio, P.; Salmeron,
M.; not yet published, 2009.
(23) Puntes, V. F.; Gorostiza, P.; Aruguete, D. M.; Bastus, N. G.;
Alivisatos, A. P. Nat. Mater. 2004, 3, 263.
(
24) Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Appl. Phys. Lett.
2
001, 78, 2187.
(25) Ojeda, M.; P e´ rez-Alonso, F. J.; Terreros, P.; Rojas, S.; Herranz,
T.; L o´ pez Granados, M.; Fierro, J. L. G. Langmuir 2006, 22, 3131.
26) Nordgren, J.; Guo, J. H. J. Electron Spectrosc. Relat. Phenom. 2001,
10-111, 1.
27) Heath, J. R.; Knobler, C. M.; Leff, D. V. J. Phys. Chem. B 1997,
101, 189.
(
2
and demonstrates that the dissociative adsorption of H is the
1
important factor responsible for the size effect. We interpret
our results with a model in which large ensembles (more than
four sites) are required for the hydrogen molecule dissociative
adsorption, a key starting step in any model mechanism of CO
methanation.
(
(
28) Rioux, R. M.; Song, H.; Grass, M.; Habas, S.; Niesz, K.;
Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. Top. Catal. 2006, 39, 167.
(29) Jacobs, G.; Ji, Y.; Davis, B. H.; Cronauer, D.; Kropf, A. J.; Marshall,
C. L. Appl. Cat. A: Gen. 2007, 333, 177.
30) Puskasa, I.; Fleischa, T. H.; Fulla, P. R.; Kaduka, J. A.; Marshall,
C. L.; Meyers, B. L. Appl. Catal. A: Gen. 2006, 311, 146.
31) Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. J. Phys.
(
Acknowledgment. We thank Prof. Paul Alivisatos for his
support in the synthesis of nanoparticles and careful reading of
this paper. This work was supported by the Director, Office of
Science, Office of Basic Energy Sciences, Chemical Sciences,
Geosciences, and Biosciences Division, under the Department
of Energy Contract No. DE-AC02-05CH11231. Synthesis and
characterization of the nanoparticles was performed in the
Molecular Foundry and at the Advanced Light Source. T.H.
acknowledges also financial support from the Ramon Areces
Foundation from Spain.
(
Chem. B 2005, 109, 188.
(32) Yang, H. T.; Shen, C. M.; Wang, Y. G.; Su, Y. K.; Yang, T. Z.;
Gao, H. J. Nanotechnology 2004, 15, 70.
(
33) Bao, Y. P.; Beerman, M.; Pakhomov, A. B.; Krishnan, K. M. J.
Phys. Chem. B 2005, 109, 7220.
(34) Morales, F.; de Groot, F. M. F.; Glatzel, P.; Kleimenov, E.; Bluhm,
H.; H a¨ vecker, M.; Knop-Gericke, A.; Weckhuysen, B. M. J. Phys. Chem.
B 2004, 108, 16201.
(
35) Beitel, G. A.; Laskov, A.; Oosterbeek, H.; Kuipers, E. W. J. Phys.
Chem. 1996, 100, 12494.
(36) St o¨ hr, J. NEXAFS Spectroscopy. Springer Series in Surface Sci-
ences, 2nd print; Springer-Verlag: New York, 2003.
(
37) van Steen, E.; Clayes, M.; Dry, M. E.; van der Loosdrecht, J.;
Vilkoen, E. L.; Visagie, J. L. J. Phys. Chem. B 2005, 109, 3575.
38) Saib, A. M.; Borgna, A.; van de Loosdrecht, J.; van Berge, P. J.;
References and Notes
(
(
(
(
(
1) Qiang, Y. J. Phys. ReV. B 2002, 66, 064404.
Niemantsverdriet, J. M. J. Phys. Chem. B 2006, 110, 8657.
(
(
2) Petit, C. J. Phys. Chem. B. 2003, 107, 10333.
39) Reuel, R. C.; Bartholomew, C. H. J. Catal. 1984, 85, 63.
40) Mitsui, T.; Rose, M. K.; Fomin, E.; Ogletree, D. F.; Salmeron, M.
3) Terrado, E. Mater. Sci. Eng., C 2006, 26, 1185.
4) Yang, W. H.; Kim, M. H.; Ham, S. H. Catal. Today 2007, 123,
Nature 2003, 422, 705.
41) Montano, M.; Bratlie, K.; Salmeron, M.; Somorjai, G. A. J. Am.
Chem. Soc. 2006, 128, 13229.
42) Rose, F.; Tartakhanov, M.; Fomin, E.; Salmeron, M. J. Phys. Chem.
C. 2007, 111, 19052.
43) Inderwildi, O. R.; Jenking, S. J.; King, D. A. J. Phys. Chem. C,
008, 112, 1305.
9
4.
(
(
(
5) Armor, J. N. Catal. Today 1995, 26, 147.
6) Dry, M. E., Catalysis: Science and Technologies; Anderson, J. R.,
(
Boudart, M., Eds.; Springer-Verlag: Berlin, 1981; Vol. 1 p 159.
7) Khodakov, A. Y.; Chu, W.; Fongarland, P. Chem. ReV. 2007, 107,
692.
8) Jacobs, G.; Das, T.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B. H.
Appl. Catal. A: Gen. 2002, 233, 263.
(
(
1
2
(
JP901602S