2020
Appl. Phys. Lett., Vol. 73, No. 14, 5 October 1998
Koleske et al.
shown in the atomic force microscope data of Ref. 20 for a
nucleation layer annealed at 100 Torr vs 140 Torr. In addi-
tion to increasing the nucleation layer coalescence, the en-
hanced GaN decomposition rate may aid in the ordering of
the epitaxial film by increasing the decomposition and incor-
poration rates,7 bringing the growth closer to equilibrium.6
Studies are underway to determine the pressure influence on
the coarsening of the nucleation layer before high-
temperature growth. This study illustrates a possible major
difference between reduced and atmospheric MOVPE GaN
growth.
The authors thank J. A. Freitas, Jr. and W. J. Moore for
characterization of the films. This work is supported by the
Office of Naval Research through the ONR Power Electronic
Building Block Program monitored by George Campisi.
FIG. 3. Arrhenius plot of the Ga desorption rate measured at four different
pressures versus the inverse temperature. All data are fit by kGaϭ(6.6
Ϯ0.4)ϫ1029 cmϪ2 sϪ1 exp(Ϫ2.74Ϯ0.02 eV/kBT).
1 S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 64, 1687 ͑1994͒.
2 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mat-
sushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74
͑1996͒.
3 S. N. Mohammad, A. A. Salvador, and H. Morkoc¸, Proc. IEEE 83, 1306
͑1995͒; S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 ͑1992͒;
R. F. Davis, Proc. IEEE 79, 702 ͑1991͒.
the surface, and therefore, can diffuse farther before
incorporation.17 The implication for the present study is that
any increase in the Ga diffusion length would more rapidly
uncover new areas of the GaN surface for N2 desorption,
which is 10–1000 times faster than the Ga desorption.5,15
The active dissociation of surface H2 may also occur on the
highly polar GaN surface, and this may be enhanced at high
pressures. Also, liquid Ga has recently been suggested to act
as a catalyst to initiate and enhance GaN decomposition.18
Further studies are underway to access the mechanism of the
enhanced GaN decomposition.
4 W. C. Johnson, J. B. Parsons, and M. C. Crew, J. Phys. Chem. 36, 2651
͑1932͒.
5 D. D. Koleske, A. E. Wickenden, R. L. Henry, W. J. DeSisto, and R. J.
Gorman, J. Appl. Phys. 84, 1998 ͑1998͒.
6 R. Heckingbottom, in Molecular Beam Epitaxy and Heterostructures, ed-
ited by L. L. Chang and K. Ploog ͑Martinus Nijhoff, Dordrecht, 1985͒, p.
71.
7 S. Yu. Karpov and M. A. Maiorov, Surf. Sci. 393, 108 ͑1997͒.
8 R. J. Sime and J. L. Margrave, J. Phys. Chem. 60, 810 ͑1956͒.
9 Z. A. Munir and A. W. Searcy, J. Chem. Phys. 42, 4223 ͑1965͒.
10 R. Groh, G. Gerey, L. Bartha, and J. I. Pankove, Phys. Status Solidi A 26,
353 ͑1974͒.
One major impact of this study on the growth of GaN in
our reactor is that the material quality is substantially im-
proved when GaN growth is conducted above 100 Torr.
When the GaN epitaxial layer is grown above 100 Torr, we
find a near doubling of the mobility (Ͼ500 cm2/V s for
11 R. C. Schoonmaker, A. Buhl, and J. Lemley, J. Phys. Chem. 69, 3455
͑1965͒.
12 A. S. Bolgar, S. P. Gordienko, E. A. Ryklis, and V. V. Fesenko, in Chem-
istry and Physics of the Nitrides, edited by G. V. Samsonov ͓in Russian͔
͑Naukova, Dumka, Kiev 1968͒, p. 151; also, see I. G. Pichugin and D. A.
Yas’kov, Izv. Akad. Nauk SSSR, Neorg. Mater. 6, 1973 ͑1970͒.
13 R. E. Honig and D. A. Kramer, RCA Rev. 30, 285 ͑1969͒.
14 M. Zinke-Allmang, L. C. Feldman, and W. van Saarloos, Phys. Rev. Lett.
86, 2358 ͑1992͒.
intentionally Si-doped films with nϭ2–3ϫ1017 cmϪ3
)
compared to growth at 76 Torr. Other groups using close-
spaced or high-speed rotating disk reactors have also re-
ported improved electric properties when their GaN epitaxial
growth is conducted above 100 Torr.19,20 In the films grown
above 100 Torr, the GaN grain size is increased to 2–5 m
compared to grain sizes of Ͻ1 m for growth at 76 Torr.
The reasons for the increased grain size are twofold and may
be related to the enhanced GaN decomposition that occurs at
higher pressures. It is known that during the temperature
ramp from the nucleation layer to epitaxial growth condi-
tions, the nucleation layer coalesces to form larger grains21
with increased roughness.22 If the ramp is conducted at high
pressures, the nucleation layer grain may coalesce to a larger
extent than at lower pressures. This increased coalescence is
15 O. Brandt, H. Yang, and K. H. Ploog, Phys. Rev. B 54, 4432 ͑1996͒.
16 H. Remy, Treatise on Inorganic Chemistry ͑Elsevier, New York, 1960͒, p.
18; W. R. S. Garton, Proc. Phys. Soc. London, Sect. A 64, 509 ͑1951͒.
17 Y. Morishita, Y. Nomura, S. Goto, and Y. Katayama, Appl. Phys. Lett. 67,
2500 ͑1995͒.
18 A. Pisch and R. Schmid-Fetzer, J. Cryst. Growth 187, 329 ͑1998͒.
19 B. T. McDermott, R. Pittman, E. R. Gertner, J. Krueger, C. Kisielowski,
Z. Lilienthal-Weber, and E. Weber, Talk D2.2 at Fall Material Research
Society Meeting, Boston, 1997.
20 J. Han, T.-B. Ng, R. M. Biefeld, M. H. Crawford, and D. M. Follstaedt,
Appl. Phys. Lett. 71, 3114 ͑1997͒.
21 A. E. Wickenden, D. K. Wickenden, and T. J. Kistenmacher, J. Appl.
Phys. 75, 5367 ͑1994͒.
22 J. C. Ramer, K. Zheng, C. F. Kranenberg, M. Banas, and S. D. Hersee,
Mater. Res. Soc. Symp. Proc. 395, 225 ͑1996͒.
128.248.155.225 On: Sun, 23 Nov 2014 20:30:09