Organometallics 2010, 29, 501–504 501
DOI: 10.1021/om900801w
Synthesis, Structural Characterization, and Thermal Properties of the
0
0
First Germanium N,N,N ,N -Tetraalkylguanidinates
,
Tianniu Chen,* William Hunks, Philip S. Chen, Chongying Xu,
†
†
†
†
‡
Antonio G. DiPasquale, and Arnold L. Rheingold
‡
†
Advanced Technology Development Division, Advanced Technology Materials Inc. (ATMI), 7 Commerce
Drive, Danbury, Connecticut 06810 and Department of Chemistry and Biochemistry, University of
‡
California, San Diego, 9500 Gilman Drive, MC 0358, Urey Hall 5128, La Jolla, California 92093-0358
Received September 14, 2009
0
0
Summary: The first examples of germanium N,N,N ,N -tetra-
alkylguanidinates have been prepared, and two of them have
been structurally characterized. All of them exihibit high stabi-
lity and volatility. Their potential as low-temperature precursors
undergo a thermally induced crystalline-amorphous phase
transition for data storage, has been demonstrated in the
next-generation nonvolatile phase change random access
memory (PRAM) to replace conventional dynamic and flash
1
8-23
for MOCVD of Ge and Ge Te films has been explored.
x
y
random access memory technology.
However, there are
some limitations associated with Ge(IV) precursors for
MOCVD of Ge alloy films, such as high deposition tem-
peratures, resulting poor film conformality and morphology,
hazardous process conditions, and premature decomposi-
Volatile germanium complexes have attracted consider-
able attention because of their potential applications as
precursors for metal organic chemical vapor deposition
1
2-17
(MOCVD), metal organic vapor-phase epitaxy (MOVPE),
tion experienced when germane is present.
In an
or atomic layer deposition (ALD) of metallic germanium
and germanium alloy films for graded SiGe buffer layers,
strained silicon being implemented in the next generation of
complementary metal oxide semiconductor (CMOS) field
effect transistor (FET) technology, silicon-based photonics,
(18) Ovshinsky, S. R. Phys. Rev. Lett. 1968, 21, 1450.
(19) Meijer, G. I. Science 2008, 319, 1625.
(20) Hudgens, S.; Johnson, B. Mater. Res. Bull. 2004, 1.
(
21) Pore, V.; Hatanp €a €a , T.; Ritala, M.; Leskela, M. J. Am. Chem.
Soc. 2009, 131, 3478.
22) Raoux, S.; Shelby, R. M.; Jordan-Sweet, J.; Munoz, B.; Salinga,
1
-7
(
and more efficient solar cells.
8
Recently the use of both
12-17
-11
M.; Chen, Y.; Shih, Y.-H.; Lai, Shih, E.-K.; Lee, M.-H. Microelectron.
Eng. 2008, 85, 2330.
(23) Akola, J.; Jones, R. O. Phys. Rev. B 2007, 76, 235207.
germanium(II)
and germanium(IV)
precursors for
MOCVD/ALD of phase-change chalcogenide alloy films
with the prototype of GeTe or Ge Sb Te (GST), which
(24) Synthesis of (TMG)
HTMG) (93.2 mmol, 5.00 g) was dissolved in 100 mL of ether and then
added slowly to the mixture of GeCl (23.3 mmol, 5.00 g) in 10 mL of
ether and NEt
(93.2 mmol, 9.43 g) at 0 ꢀC, and the mciixture was stirred
2 2 2 2
GeCl (1). Method A: (Me N) CdNH
2
2
5
(
4
*To whom correspondence should be addressed: Tel: (203) 739-1405.
3
Fax: (203) 830-2123. E-mail: tchen@atmi.com.
and warmed tomac_opb;its complementary NMR spectra are provided
in the Supporting Information room temperature (RT) overnight. After
filtration, the solvent was removed in vacuo, yielding off-white solid 1.
(
(
1) Baxter, D. V.; Chisholm, M. H. Chem. Vap. Deposition 1995, 1, 49.
2) Vep ꢀs ek, S.; Prokop, J.; Glatz, F.; Merica, R.; Klingan, F. R.;
Herrmann, W. A. Chem. Mater. 1996, 8, 825.
3) Shenai, D. V.; DiCarlo, R. L., Jr.; Power, M. B.; Amamchyan,
A. R.; Goyette; Woelk, J. E. J. Cryst. Growth 2007, 298, 172.
4) Fang, Y. Y.; D’Costa, V. R.; Tolle, J. C.; Poweleit, D.; Kouvetakis,
J.; Men ꢁe ndez, J. Thin Solid Films 2008, 516, 8327.
5) Jalali, B.; Paniccia, M.; Reed, G. IEEE Microwave Magn. 2006, 7,
440.
4
Yield: 4.01 g (10.8 mmol, 46.4% based on GeCl ). Method B: LiTMG
(15.5 mmol, 11.3 g) was added to GeCl (23.3 mmol, 5.00 g) in 100 mL of
ether slowly at 0 ꢀC, and the mciixture was stirred and warmed
tomac_opb;its complementary NMR spectra are provided in the Sup-
porting Information RT overnight. After filtration, the solvent was
removed in vacuo, yielding off-white solid 1. Yield: 7.02 g (19.1 mmol,
(
4
(
(
1
82.0% based on GeCl
6.51; N, 22.60; Cl, 19.07. Found: C, 32.32; H, 6.56; N, 22.48; Cl, 18.86.
4 6 10 2
). Anal. Calcd for GeN C H24Cl : C, 32.29; H,
(
(
6) Green, M. A. Prog. Photovoltaics 2001, 9, 123.
7) Fang, Y.-Y.; Tolle, J.; Tice, J.; Chizmeshya, A. V. G.; Kouvetakis,
1
13
1
H NMR (RT, 300 MHz, C
NMR (RT, 75 MHz, C ): δ 39.58 (C(N(CH
(25) Synthesis of TMG) Ge(NMe (2). LiNMe
2
6
D
6
): δ 2.61 (24H, s, C(N(CH
), 164.94 (CdN).
(6.08 mmol, 0.310
3 2 2
) ) ). C{ H}
J.; D’Costa, V. R.; Men ꢁe ndez, J. Chem. Mater. 2007, 19, 5910.
8) Chen, T.; Xu, C.; Hunks, W.; Stender, M.; Stauf, G.; Chen, P.;
Roeder, J. ECS Trans. 2007, 11, 269.
9) Hunks, W.; Chen, P. S.; Chen, T.; Stender, M.; Stauf, G. T.;
Maylott, L.; Xu, C.; Roeder, J. F. Mater. Res. Soc. Symp. Proc. 2008,
071, F09–11.
10) Chen, P. S.; Hunks, W.; Stender, M.; Chen, T.; Stauf, G. T.; Xu,
C.; Roeder, J. F. Mater. Res. Soc. Symp. Proc. 2008, 1071, F09–10.
11) Chen, T.; Hunks, W.; Chen, P.; Stauf, G.; Cameron, T.; Xu, C.;
DiPasquale, A.; Rheingold, A. Eur. J. Inorg. Chem. 2009, 14, 2047.
12) Lee, J.; Choi, S.; Lee, C.; Kang, Y.; Kim, D. Appl. Surf. Sci. 2007,
53, 3969.
13) Choi, B. J.; Choi, S.; Shin, Y. C.; Hwang, C. S.; Lee, J. W.; Jeong,
D
3 2 2
) )
6
6
(
2
2
)
2
g) was added to complex 1 (2.96 mmol, 1.10 g) in 50 mL of ether slowly at
0 ꢀC, and the mciixture was stirred and warmed tomac_opb;its com-
plementary NMR spectra are provided in the Supporting Information
RT overnight. After filtration, the solvent was removed in vacuo,
yielding off-white sticky solid 2. Yield: 0.801 g (2.06 mmol, 69.6% based
(
1
(
on 1). Anal. Calcd for GeN
8
C
14
H
36: C, 43.23; H, 9.33; N, 28.80. Found:
C, 43.22; H, 9.34; N, 28.52. H NMR (RT, 300 MHz, C ): δ 2.66 (24H,
), C{ H} NMR (RT, 75 MHz,
), 41.24 (N(CH ), 161.07 (CdN).
Ge(NEt (3). LiNEt (25.3 mmol, 2.00 g)
1
(
6 6
D
1
3
1
s, C(N(CH
): δ 40.14 (C(N(CH
(26) Synthesis of (TMG)
3 2 2 3 2
) ) ), 3.05 (12H, s, N(CH )
(
C
6
D
6
3
)
2
)
2
3 2
)
2
2
2
)
2
2
(
was added to complex 1 (12.0 mmol, 4.50 g) in 50 mL of ether slowly at
0 ꢀC, and the mciixture was stirred and warmed tomac_opb;its com-
plementary NMR spectra are provided in the Supporting Information
RT overnight. After filtration, the solvent was removed in vacuo,
yielding pale yellow liquid 3. Yield: 4.02 g (9.03 mmol, 75.3% based
J.; Kim, Y. J.; Hwang, S.; Hong, S. K. J. Electrochem. Soc. 2007, 154,
H318.
(14) Kim, R.; Kim, H. Appl. Phys. Lett. 2006, 89, 102107.
(15) Yim, R. Y.; Kim, H. G.; Yoon, S. G. J. Appl. Phys. 2007, 102,
0
83531.
16) Choi, B. J.; Choi, S.; Shin, Y. C.; Kim, K. M.; Hwang, C. S.;
Kim, Y. J.; Son, Y. J.; Hong, S. K. Chem. Mater. 2007, 19, 4387.
17) Privitera, S.; Lombarbo, S.; Bongiorno, C.; Rimini, E.; Pirovano,
on 1). Anal. Calcd for GeN
8
C
18
H
44: C, 48.56; H, 9.96; N, 25.17. Found:
C, 48.49; H, 9.96; N, 25.07. H NMR (RT, 300 MHz, C ): δ 1.29 (24H,
t, N(CH CH ), 2.67 (12H, s, C(N(CH , 3.41 (8H, q, N(CH CH ).
C{ H} NMR (RT, 75 MHz, C ): δ 16.7 (N(CH CH ), 40.0
(C(N(CH ), 40.7 (N(CH CH ), 160.2 (CdN).
1
(
6 6
D
2
3
)
2
3
)
2
)
2
2
3 2
)
1
3
1
(
6
D
6
2
3 2
)
A. J. Appl. Phys. 2007, 102, 013516.
3
)
2
)
2
2
3 2
)
r 2009 American Chemical Society
Published on Web 12/18/2009
pubs.acs.org/Organometallics