SYNTHESIS OF TiO2–ZrO2 BINARY OXIDES BY HYDROLYSIS
1067
9. M. E. Zorn, D. T. Tompkins, W. A. Zeltner, et al., Enviꢀ
ron. Sci. Technol. 34, 5206 (2000).
10. S. Rengakuji, Y. Nakamura, and Y. Hara, Electrochem
69, 764 (2001).
11. A. K. Vasilevskaya and O. V. Al’myasheva, Nanoꢀ
sistemy: Fiz., Khim., Mat. 3 (4), 75 (2012).
12. L. G. Karakchiev, T. M. Zima, and Yu. A. Gaponov,
Colloid J. 63, 426 (2001).
13. L. G. Karakchiev, T. M. Zima, and N. Z. Lyakhov,
Inorg. Mater. 37, 386 (2001).
14. R. Farias, U. Arnold, L. Martínez, et al., J. Phys.
Chem. Solids 64, 2385 (2003).
15. A. B. Shishmakov, Y. V. Mikushina, O. V. Koryakova,
et al., Russ. J. Inorg. Chem. 57, 787 (2012).
16. A. B. Shishmakov, O. V. Koryakova, A. S. Seleznev,
et al., Russ. J. Appl. Chem. 86, 151 (2013).
17. A. B. Shishmakov, L. S. Molochnikov, D. O. Antonov,
et al., Russ. J. Appl. Chem. 86, 297 (2013).
18. A. B. Shishmakov, O. V. Koryakova, A. S. Seleznev,
et al., Russ. J. Inorg. Chem. 58, 1160 (2013).
19. A. B. Shishmakov, L. S. Molochnikov, D. O. Antonov,
et al., Russ. J. Inorg. Chem. 59, 159 (2014).
20. L. J. Bellami, The InfraꢀRed Spectra of Complex Moleꢀ
cules (Wiley, London, 1954).
Fig. 11. Micrograph of sample 5(A). Frame width: 4 µm.
21. K. Nakamoto, Infrared Spectra of Inorganic and Coorꢀ
dination Compounds (Wiley, New York, 1963; Mir, Mosꢀ
cow, 1966).
zation of the tetragonal ZrO2 phase; when TiO2–ZrO2
=
0.84 : 0.16, zirconium in turn stabilizes titanium dioxꢀ 22. O. A. Gorban’, Yu. O. Kulik, E. G. Kononenko, et al.,
Nauchn. Tr. Donetsk. Nats. Tekhn. Univ., Ser. Khim.
Khim. Tekhnol., No 10(134), 702008 (2008).
ide in the anatase phase. Microstructurally the powꢀ
ders are built of both irregularly shaped particles and
23. O. A. Gorban’, S. A. Sinyakina, S. V. Gorban’, et al.,
particles having regular spherical shapes.
Nanosistemy, Nanomater., Nanotekhnol.
(2009).
7, 1195
24. O. V. Kuznetsova, V. G. Kharchuk, O. V. Koryakova,
REFERENCES
et al., Anal. Kontrol 10, 126 (2006).
25. A. A. Davydov, IR Spectroscopy in the Chemistry of Oxide
Surfaces (Nauka, Novosibirsk, 1984) [in Russian].
26. A. B. Shishmakov, Y. V. Mikushina, O. V. Koryakova,
et al., Russ. J. Inorg. Chem. 57, 24 (2012).
27. E. T. Bender, P. Katta, A. Lotus, et al., Chem. Phys.
Lett. 423, 302 (2006).
28. Y. K. Krisnandi, P. D. Southon, A. A. Adesina, et al.,
Int. J. Photoenergy 5 (3), 131 (2003).
29. L. E. Davies, N. A. Bonini, S. Locatelli, et al., Latin
1. D. Mao, G. Lu, Q. Chen, et al., Catal. Lett. 77, 119
(2001).
2. D. Mao, Q. Chen, and G. Lu, Appl. Catal. A: Gen.
244, 273 (2003).
3. J. L. Lakshmi, N. J. Ihasz, and J. M. Miller, J. Mol.
Catal. A.: Chem. 165, 199 (2001).
4. V. Vishwanathan, H.ꢀS. Roh, J.ꢀW. Kim, et al., Catal.
Lett. 96, 23 (2004).
5. K. B. Sidhpuria, B. Tyagi, and R. V. Jasra, Catal. Lett.
141, 1164 (2011).
6. R. F. Farias, U. Arnold, L. Martínez, et al., J. Phys.
Chem. Solids 64, 2385 (2003).
7. W. Lin, L. Lin, Y. X. Zhu, et al., J. Mol. Catal. A.:
Chem. 226, 263 (2005).
8. J. H. Schattka, D. G. Shchukin, J. Jia, et al., Chem.
Am. Appl. Res. 35 (1), 23 (2005).
30. C. Matranga and B. Bockrath, J. Phys. Chem. B 108
,
6170 (2004).
31. M. R. Smith, S. W. Hedges, R. LaCount, et al., Carbon
41, 1221 (2003).
Translated by O. Fedorova
Mater. 14, 5103 (2002).
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 60 No. 9 2015