11216 Inorg. Chem. 2010, 49, 11216–11222
DOI: 10.1021/ic101881j
Aqueous Telluridoindate Chemistry: Water-Soluble Salts of Monomeric, Dimeric,
and Trimeric In/Te Anions [InTe4]5-, [In2Te6]6-, and [In3Te10]11-
Johanna Heine and Stefanie Dehnen*
Fachbereich Chemie and Wissenschaftliches Zentrum fu€r Materialwissenschaften (WZMW),
€
Philipps-Universitat Marburg, Hans Meerwein Strasse, D-35043 Marburg, Germany
Received September 14, 2010
Water-soluble salts of monomeric, dimeric, and/or trimeric telluridoindate anions, [K5(H2O)2.16][InTe4] (1),
[K5(H2O)5][InTe4] (2), [K6(H2O)6][In2Te6] (3), [K16(H2O)9.62][InTe4]2[In2Te6] (4), [K133(H2O)24][In3Te10]12Te0.5
(5), and [Rb6(H2O)6][In2Te6] (6), were prepared by a fusion/extraction method starting from the elements and
characterized by single-crystal X-ray diffraction as well as spectroscopic methods. The compounds are the first
hydrates of telluridoindate salts and thus point toward an aqueous coordination chemistry with binary In/Te ligands.
Both crystallization from the extracts as mixtures of salts as well as preliminary spectroscopic investigation of the
solutions indicate the presence of an equilibrium of different anionic species. Here, the indates differ from related
stannates, which also show pH-dependent aggregation, but to a much lesser extent and in a better distinguishable
manner. We present syntheses and crystal structures and discuss observation of the coexistence of different anions
both in the solid state and in solution.
Introduction
is known about the heavier congeners, the least about indium
tellurides.
Indium chalcogenides possess many interesting properties,
such as photocatalytic activity,1 photoluminescence2 and ion
conductivity,3 and have found technical application in the
field of thin film solar cells, where doped variants of the
chalcopyrite CuInS2 hold the record of more than 19% in
conversion efficiency.4 They have been the subject of research
since the turn of the last century,5 and much effort has gone
into the preparation of a diverse range of materials, from
molecular salts6 to extended, porous frameworks composed
of large supertetrahedral clusters.7 While indium sulfides
have been the focus of attention in the last years, much less
This is exemplified by the fact that, while anionic structures
of composition transition metal (TM)/In/S have shown many
interesting properties, no example of a similar structure
containing TM/In/Te has been known up to now. So,
building on the foundation of our experiences with the
chemistry of chalcogenidotetrelates8 and their reactions to-
ward diverse ternary anionic structures, forming ternary
clusters and networks of the general type [TMxTyChz]q-
(T=tetrel=group 14 atom; Ch=chalcogen),9 we attempted
to establish a similar route employing telluridoindates. In
order to achieve this, water- or alcohol-soluble precur-
sors [InxTey]q- were needed. Although one example of a
*To whom correspondence should be addressed. E-mail: dehnen@
chemie.uni-marburg.de.
(1) Zheng, N.; Bu, X.; Vu, H.; Feng, P. Angew. Chem., Int. Ed. 2005, 44,
5299–5303.
(8) (a) Dehnen, S.; Melullis, M. Coord. Chem. Rev. 2007, 251, 1259–1280.
(b) Ruzin, E.; Jakobi, S.; Dehnen, S. Z. Anorg. Allg. Chem. 2008, 634, 995–
1001. (c) Ruzin, E.; Kracke, A.; Dehnen, S. Z. Anorg. Allg. Chem. 2006, 632,
1018–1026.
(2) Zheng, N.; Bu, X.; Wang, B.; Feng, P. Science 2002, 298, 2366–2369.
(3) Zheng, N.; Bu, X.; Feng, P. Nature 2003, 426, 428–432.
(4) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photo-
voltaics 2009, 17, 320–326.
(9) (a) Haddadpour, S.; Melullis, M.; Staesche, H.; Mariappan, C. R.;
ꢀ
Roling, B.; Clerac, R.; Dehnen, S. Inorg. Chem. 2009, 48, 1689–1698. (b) Lips,
(5) Schneider, R. J. Prakt. Chem. 1874, 9, 209–216.
F.; Dehnen, S. Inorg. Chem. 2008, 47, 5561–5563. (c) Ruzin, E.; Zimmermann,
C.; Hillebrecht, P.; Dehnen, S. Z. Anorg. Allg. Chem. 2007, 633, 820–829.
(d) Ruzin, E.; Fuchs, A.; Dehnen, S. Chem. Commun. 2006, 4796–4798.
(e) Ruzin, E.; Dehnen, S. Z. Anorg. Allg. Chem. 2006, 632, 749–755.
(6) For examples, see: (a) Eisenmann, B.; Hofmann, A. Z. Kristallogr.
1991, 197, 169–170. (b) Eisenmann, B.; Hofmann, A.; Zagler, R. Z. Naturforsch.
1990, 45b, 8–14. (c) Sportouch, S.; Belin, C.; Tillard-Charbonnel, M. Acta
Crystallogr. 1994, C50, 1861–1862. (d) Eisenmann, B.; Hofmann, A. Z.
Kristallogr. 1991, 197, 151–152. (e) Deiseroth, H. J. Z. Naturforsch. 1980,
35b, 953–958. (f) Wang, C.; Haushalter, R. C. Inorg. Chem. 1997, 36, 3806–
3807. (g) Park, C.-W.; Salm, R. J.; Ibers, J. A. Angew. Chem. 1995, 107, 2044–
2045. (h) Heine, J.; Dehnen, S. Z. Anorg. Allg. Chem. 2008, 634, 2303–2308.
(7) For a comprehensive review of this class of materials, see: Feng, P.; Bu,
X.; Zheng, N. Acc. Chem. Res. 2005, 38, 293–303.
ꢀ
(f) Zimmermann, C.; Anson, C. E.; Weigend, F.; Clerac, R.; Dehnen, S. Inorg.
ꢀ
Chem. 2005, 44, 5686–5695. (g) Melullis, M.; Clerac, R.; Dehnen, S. Chem.
ꢀ
Commun. 2005, 6008–6010. (h) Brandmayer, M. K.; Clerac, R.; Weigend, F.;
Dehnen, S. Chem.;Eur. J. 2004, 10, 5147–5157. (i) Dehnen, S.; Brandmayer,
M. K. J. Am. Chem. Soc. 2003, 125, 6618–6619. (j) Zimmermann, C.; Melullis,
M.; Dehnen, S. Angew. Chem., Int. Ed. 2002, 41, 4269–4272.
r
pubs.acs.org/IC
Published on Web 11/04/2010
2010 American Chemical Society