Coumarin-based probe for the detection of biothiols
26. Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes
for detection of thiols. Chem Soc Rev 2010;39:2120–35.
27. Shibata A, Furukawa K, Abe H, Tsuneda S, Ito Y. Rhodamine-based
fluorogenic probe for imaging biological thiol. Bioorg Med Chem Lett
2008;18:2246–9.
References
1. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, et al.
Quantitative reactivity profiling predicts functional cysteines in
proteomes. Nature 2010;468:790–5.
2. Reddie KG, Carroll KS. Expanding the functional diversity of proteins
through cysteine oxidation. Curr Opin Chem Biol 2008;12:746–54.
3. Lipton SA, Choi Y-B, Takahashi H, Dongxian Zhang WL, Godzik A,
Bankston LA. Cysteine regulation of protein function – as exemplified
by NMDA-receptor modulation. Trends Neurosci 2002;25:474–80.
4. Shahrokhian S. Lead phthalocyanine as a selective carrier for prepara-
tion of a cysteine-selective electrode. Anal Chem 2001;73:5972–8.
5. Meurs JBJ, Dhonukshe-Rutten RAM, Pluijm SMF, Klift M, Jonge R. Ho-
mocysteine levels and the risk of osteoporotic fracture. N Engl J Med
2004;350:2033–41.
28. Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G. A rhodamine-based fluores-
cent probe containing a Se–N bond for detecting thiols and its applica-
tion in living cells. J Am Chem Soc 2007;129:11666–7.
29. Lim SY, Yoon DH, Ha DY, Ahn JM, Kim DI, Kown H, et al. Caged
rhodamine-based fluorescent probe for biothiol: selective detection
of cysteine over homocysteine and glutathione in water. Sensor Actuat
B-Chem 2013;188:111–6.
30. Shi J, Wang Y, Tang X, Liu W, Jiang H, Dou W, et al. A colorimetric and
fluorescent probe for thiols based on 1,8-naphthalimide and its appli-
cation for bioimaging. Dyes Pigment 2014;100:255–60.
31. Jiang XD, Zhang J, Shao X, Zhao W. A selective fluorescent turn-on NIR
probe for cysteine. Org Biomol Chem 2012;10:1966–8.
6. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB,
et al. Plasma homocysteine as a risk facor for dementia and alzheimer’s
disease. N Engl J Med 2002;346:476–83.
32. Shao J, Guo H, Ji S, Zhao J. Styryl-BODIPY based red-emitting fluores-
cent OFF–ON molecular probe for specific detection of cysteine.
Biosens Bioelectron 2011;26:3012–7.
7. Refsum H, Ueland PM, Nygård O, Vollset SE. Homo cysteine and cardio-
vascular disease. Annu Rev Med 1998;49:31–62.
8. Meister A. Glutathione metabolism and its selective modification. J Biol
Chem 1988;263:17205–8.
9. Lu SC. Regulation of glutathione synthesis. Mol Aspect Med
33. Wang H, Zhou G, Gai H, Chen X. A fluorescein-based probe with high
selectivity to cysteine over homocysteine and glutathione. Chem
Commun 2012;48:8341–3.
2009;30:42–59.
34. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO, et al.
Detection of homocysteine and cysteine. J Am Chem Soc 2005;
127:15949–58.
35. Hong K-H, Lim S-Y, Yun M-Y, Lim J-W, Woo J-H, Kwon H, et al. Selective
detection of cysteine over homocysteine and glutathione by a bis
(bromoacetyl)fluorescein probe. Tetrahedron Lett 2013;54:3003–6.
36. Lee H, Kim H-J. Fluorescein aldehyde with disulfide functionality as a
fluorescence turn-on probe for cysteine and homocysteine in HEPES
buffer. Org Biomol Chem 2013;11:5012–6.
37. Kong F, Liu R, Chu R, Wang X, Xu K, Tang B. A highly sensitive near-
infrared fluorescent probe for cysteine and homocysteine in living
cells. Chem Commun 2013;49:9176–8.
38. Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, et al. Cyanine-based fluores-
cent probe for highly selective detection of glutathione in cell cultures
and live mouse tissues. J Am Chem Soc 2014;136:5351–8.
39. Lim S-Y, Hong K-H, Kim DI, Kwon H, Kim H-J. Tunable heptamethine-
azo dye conjugate as an NIR fluorescent probe for the selective detec-
tion of mitochondrial glutathione over cysteine and homocysteine. J
Am Chem Soc 2014;136:7018–25.
40. Lan M, Wu J, Liu W, Zhang H, Zhang W, Zhuang X, et al. Highly sensitive
fluorescent probe for thiols based on combination of PET and ESIPT
mechanisms. Sensors Actuat B-Chem 2011;156:332–7.
41. Liu B, Wang J, Zhang G, Bai R, Pang Y. Flavone-based ESIPT ratiometric
chemodosimeter for detection of cysteine in living cells. ACS Appl
Mater Interfaces 2014;6:4402–7.
42. Liu J, Sun YQ, Huo Y, Zhang H, Wang L, Zhang P, et al. Simultaneous
fluorescence sensing of Cys and GSH from different emission channels.
J Am Chem Soc 2014;136:574–7.
43. Kim G-J, Yoon D-H, Yun M-Y, Kwon H, Ha H-J, Kim H-J. Ratiometric fluo-
rescence probes based on a Michael acceptor type of coumarin and
their application for the multichannel imaging of in vivo glutathione.
RSC Adv 2014;4:18731–6.
10. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism
and its implications for health. J Nutr 2004;134:489–92.
11. Townsend DM, Tew KD, Tapiero H. The importance of glutathione in
human disease. Biomed Pharmacother 2003;57:145–55.
12. Chen W, Zhao Y, Seefeldt T, Guan X. Determination of thiols and
disulfides via HPLC quantification of 5-thio-2-nitrobenzoic acid. J
Pharm Biomed Anal 2008;48:1375–80.
13. Nolin TD, McMenamin ME, Himmelfarb J. Simultaneous determina-
tion of total homocysteine, cysteine, cysteinylglycine, and glutathi-
one in human plasma by high-performance liquid chromatography:
application to studies of oxidative stress. J Chromatogr B 2007;
852:554–61.
14. Sato Y, Iwata T, Tokutomi S, Kandori H. Reactive cysteine is protonated
in the triplet excited state of the LOV2 domain in adiantum phyto-
chrome 3. J Am Chem Soc 2005;127:1088–9.
15. Burford N, Eelman MD, Mahony DE, Morash M. Definitive identification
of cysteine and glutathione complexes of bismuth by mass spectrom-
etry: assessing the biochemical fate of bismuth pharmaceutical agents.
Chem Commun 2003;146–7.
16. MacCoss MJ, Fukagawa NK, Matthews DE. Measurement of homocyste-
ine concentrations and stable isotope tracer enrichments in human
plasma. Anal Chem 1999;71:4527–33.
17. Huang GG, Han XX, Hossain MK, Ozaki Y. Development of a heat-
induced surface-enhanced Raman scattering sensing method for rapid
detection of glutathione in aqueous solutions. Anal Chem
2009;81:5881–8.
18. Inoue T, Kirchhoff JR. Determination of thiols by capillary electrophore-
sis with amperometric detection at a coenzyme pyrroloquinoline
quinone modified electrode. Anal Chem 2002;74:1349–54.
19. Ivanov AR, Nazimov IV, Baratova LA. Determination of biologically
active low-molecular-mass thiols in human blood. J Chromatogr A
2000;895:167–71.
20. Wang W, Li L, Liu S, Ma C, Zhang S. Determination of physiological
thiols by electrochemical detection with piazselenole and its applica-
tion in rat breast cancer cells 4 T-1. J Am Chem Soc 2008;130:10846–7.
21. Inoue T, Kirchhoff JR. Electrochemical detection of thiols with a coen-
zyme pyrroloquinoline quinone modified electrode. Anal Chem
2000;72:5755–60.
44. Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, et al. A cysteine-
selective fluorescent probe for the cellular detection of cysteine. Bio-
materials 2012;33:945–53.
45. Sun YQ, Chen M, Liu J, Lv X, Li JF, Guo W. Nitroolefin-based coumarin as
a colorimetric and fluorescent dual probe for biothiols. Chem Commun
2011;47:11029–31.
46. Lim S-Y, Na M-J, Kim H-J. 7-Aminocoumarinyldisulfide as a ratiometric
fluorescent probe for biothiols in water. Sensors Actuat B-Chem
2013;185:720–4.
47. Kim GJ, Lee K, Kwon H, Kim HJ. Ratiometric fluorescence imaging of
cellular glutathione. Org Lett 2011;13:2799–801.
22. Zheng C, Pu S, Liu G, Chen B, Dai Y. A highly selective colorimetric sen-
sor for cysteine and homocysteine based on a new photochromic
diarylethene. Dyes Pigment 2013;98:280–5.
23. Shao N, Jin JY, Cheung SM, Yang RH, Chan WH, Mo T. A spiropyran-
based ensemble for visual recognition and quantification of cysteine
and homocysteine at physiological levels. Angew Chem Int Ed
2006;45:4944–8.
48. Kwon H, Lee K, Kim HJ. Coumarin–malonitrile conjugate as a fluores-
cence turn-on probe for biothiols and its cellular expression. Chem
Commun 2011;47:1773–5.
24. Yin C, Huo F, Zhang J, Martinez-Manez R, Yang Y, Lv H, et al. Thiol-addition
reactions and their applications in thiol recognition. Chem Soc Rev
2013;42:6032–59.
49. Yi L, Li HY, Sun L, Liu LL, Zhang CH, Xi Z. A highly sensitive fluorescence
probe for fast thiol-quantification assay of glutathione reductase.
Angew Chem Int Ed 2009;48:4034–7.
25. Jung HS, Chen X, Kim JS, Yoon J. Recent progress in luminescent and
colorimetric chemosensors for detection of thiols. Chem Soc Rev
2013;42:6019–31.
50. Jung HS, Ko KC, Kim GH, Lee AR, Na YC, Kang C, et al. Coumarin-based
thiol chemosensor: synthesis, turn-on mechanism, and its biological
application. Org Lett 2011;13:1498–501.
Luminescence 2015; 30: 1395–1402
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/luminescence