Communication
ChemComm
3 S. A. Johnson, J. A. Hatnean and M. E. Doster, Prog. Inorg. Chem.,
2012, 57, 255–352.
4 A. Nova, R. Mas-Balleste and A. Lledos, Organometallics, 2012, 31,
1245–1256.
5 S. Utsumi, T. Katagiri and K. Uneyama, J. Fluorine Chem., 2013, 152,
84–89.
6 T. Stahl, H. F. T. Klare and M. Oestreich, ACS Catal., 2013, 3,
1578–1587.
7 T. Ahrens, J. Kohlmann, M. Ahrens and T. Braun, Chem. Rev., 2015,
115, 931–972.
8 B. Morel, S. Chatain and R. J. M. Konings, Comprehensive Nuclear
Materials, Elsevier, Oxford, 2012, pp. 197–215.
9 M. Weydert, R. A. Andersen and R. G. Bergman, J. Am. Chem. Soc.,
1993, 115, 8837–8838.
10 Y. Sun, R. McDonald, J. Takats, V. W. Day and T. A. Eberspacher,
Inorg. Chem., 1994, 33, 4433–4434.
11 M. A. Antunes, A. Domingos, I. Cordeiro dos Santos, N. Marques and
J. Takats, Polyhedron, 2005, 24, 3038–3045.
12 S. J. Kraft, P. E. Fanwick and S. C. Bart, Inorg. Chem., 2010, 49,
1103–1110.
13 E. M. Matson, P. E. Fanwick and S. C. Bart, Organometallics, 2011,
30, 5753–5762.
Fig. 3 19F NMR spectra (ppm) monitoring the reactions of 1-Bz with
pentafluorobenzene (top, 40 min time point), and 1-Bz with 2,3,5,6-
tetrafluorotoluene (bottom, 60 min time point) supporting the symmetry
of the of the bound, fluorinated intermediate species. Inset shows the
triplet resonance for the F at the p-position of 1-F*, Tp*2U(C6F5).
14 E. M. Matson, W. P. Forrest, P. E. Fanwick and S. C. Bart, J. Am.
Chem. Soc., 2011, 133, 4948–4954.
15 A. C. Hillier, X. W. Zhang, G. H. Maunder, S. Y. Liu, T. A.
Eberspacher, M. V. Metz, R. McDonald, Ç. Domingos, N. M.
Marques, V. W. Day, A. Sella and J. Takats, Inorg. Chem., 2001, 40,
5106–5116.
16 W. W. Lukens, Jr., P. G. Allen, J. J. Bucher, N. M. Edelstein,
E. A. Hudson, D. K. Shuh, T. Reich and R. A. Andersen, Organo-
metallics, 1999, 18, 1253–1258.
17 E. M. Matson, J. J. Kiernicki, N. H. Anderson, P. E. Fanwick and
S. C. Bart, Dalton Trans., 2014, 43, 17885–17888.
18 K. W. Bagnall and J. Edwards, J. Less-Common Met., 1976, 48,
159–165.
19 R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor.
Gen. Crystallogr., 1976, 32, 751–767.
20 R. K. Thomson, C. R. Graves, B. L. Scott and J. L. Kiplinger, Dalton
Trans., 2010, 39, 6826–6831.
21 R. K. Thomson, C. R. Graves, B. L. Scott and J. L. Kiplinger, Eur.
J. Inorg. Chem., 2009, 1451–1455.
22 R. R. Ryan, R. A. Penneman and B. Kanellakopulos, J. Am. Chem.
Soc., 1975, 97, 4258–4260.
23 W. J. Evans, G. W. Nyce, M. A. Johnston and J. W. Ziller, J. Am. Chem.
Soc., 2000, 122, 12019–12020.
24 J. Katz, L. R. Morss and G. T. Seaborg, The Chemistry of the Actinide
Elements, Chapman Hall, New York, 1980.
25 I. Castro-Rodriguez and K. Meyer, Chem. Commun., 2006,
1353–1368.
26 I. Castro-Rodriguez, K. Olsen, P. Gantzel and K. Meyer, J. Am. Chem.
Soc., 2003, 125, 4565–4571.
27 H. Nakai, X. Hu, L. N. Zakharov, A. L. Rheingold and K. Meyer, Inorg.
Chem., 2004, 43, 855–857.
28 I. Castro-Rodriguez, H. Nakai, L. N. Zakharov, A. L. Rheingold and
K. Meyer, Science, 2004, 305, 1757–1760.
29 L. Maron, E. L. Werkema, L. Perrin, O. Eisenstein and
R. A. Andersen, J. Am. Chem. Soc., 2005, 127, 279–292.
30 P. J. Fagan, J. M. Manriquez, E. A. Maatta, A. M. Seyam and
T. J. Marks, J. Am. Chem. Soc., 1981, 103, 6650–6667.
perfluorobenzene, but is inert towards perfluoroethane.36 Of note
for 1-Bz is the qualitative positive correlation between the degree of
fluorination of aromatic substrates and their reactivities. Analo-
gously, a correlation between substrate electron affinity and sub-
strate reactivity was also noted by Andersen; those substrates
having higher electron affinities were more reactive than those
having lower electron affinities. For 1-Bz, only in the case of
aromatic C–F bond activation was the corresponding C–C bond
formation between the substrate and benzyl group noted, despite
the low reduction potential and high reactivity towards substrates
such as perfluorodecalin.
Another interesting observation made during the course of
these studies was that 1-F activates the sp3 hybridized C–F bonds
in a,a,a-trifluorotoluene and perfluorohexane. These substrates do
not react with 1-Bz at 55 1C over long reaction times, but slowly
convert 1-F to 1-F2 at ambient temperature. Conversely, 1-F cannot
activate the C–F bonds of perfluorobenzene or pentafluoroben-
zene, as indicated by negligible conversion to 1-F2 after 24 h of
stirring at ambient temperature. The lack of reactivity with these
substrates is in sharp contrast to their reactivity with 1-Bz, which
activates both.
In summation, the uranium(III) benzyl species, 1-Bz, activates
strong C–F bonds readily, while weaker C–F bonds remain intact.
Through this process, two new low-valent uranium fluoride com-
plexes were generated, 1-F and 1-F2, and their formation was
found to be substrate dependant. Isolation and characterization
of 1-F is significant, as this is the first example of a terminal
trivalent uranium fluoride.
This material is based upon work supported by the National
Science Foundation under Grant No. 1149875 (CAREER Award
to SCB). We also acknowledge Dr Ellen Matson for performing
preliminary experiments.
´
31 L. A. Seaman, P. Hrobarik, M. F. Schettini, S. Fortier, M. Kaupp and
T. W. Hayton, Angew. Chem., Int. Ed., 2013, 52, 3259–3263.
32 T. L. Cottrell, The Strengths of Chemical Bonds, Butterworth Scientific
Publications, London, 1954.
33 B. d. Darwent, Bond Dissociation Energies in Simple Molecules,
National Bureau of Standards, Washington, 1970.
34 A. Paul, C. S. Wannere, V. Kasalova, P. v. R. Schleyer and H. F.
Schaefer, J. Am. Chem. Soc., 2005, 127, 15457–15469.
35 J. A. Marsella, A. G. Gilicinski, A. M. Coughlin and G. P. Pez, J. Org.
Chem., 1992, 57, 2856–2860.
Notes and references
1 H. Amii and K. Uneyama, Chem. Rev., 2009, 109, 2119–2183.
2 T. Braun and F. Wehmeier, Eur. J. Inorg. Chem., 2011, 613–625.
36 C. J. Burns and R. A. Andersen, J. Chem. Soc., Chem. Commun., 1989,
109, 136–137.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2015