Organic Process Research & Development 2009, 13, 911–914
Scalable Enantioseparation of Amino Acid Derivatives Using Continuous
Liquid-Liquid Extraction in a Cascade of Centrifugal Contactor Separators
Boelo Schuur,† Andrew J. Hallett,‡ Jozef G. M. Winkelman,† Johannes G. de Vries,*,‡,§ and Hero J. Heeres*,†
UniVersity of Groningen, Department of Chemical Engineering, Nijenborgh 4, 9747 AG Groningen, The Netherlands, DSM
Pharmaceutical Products, InnoVatiVe Synthesis and Catalysis, P.O. Box 16, 6160 MD Geleen, The Netherlands, and UniVersity
of Groningen, Stratingh Institute for Chemistry, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Abstract:
alcohol19-22 separation en route to single enantiomer drugs.23-25
An enantiopure host in catalytic amounts is used to preferentially
transport one of the two enantiomers across a phase boundary.
The potential of enantioselective liquid-liquid extraction lies
in its versatility and ease of scale up.26,27 However, the reported
moderate selectivities for most systems would require the use
of multistage processing to achieve high product ee’s.12,14-20,22-28
Remarkably, experimental studies on multistage chiral liquid-
liquid extraction are scarce. We are aware of only two reports
from Maier in which full separation of a racemate was achieved,
one describing the use of a number of membranes in series
and another one in which an analytical centrifugal partition
chromatograph (CPC) was used.7,10 Although these results are
quite remarkable, the methods are not scalable. The productivity
of the membrane systems is much too low, and the CPC only
exists as an analytical instrument, although recently the con-
struction of a scaled-up version with a volume of 18 L was
reported.29 Other than Chiral SMB, no scalable method exists
for liquid phase enantioseparation.
Using a cascade of six centrifugal contactor separators in a
countercurrent liquid-liquid extraction mode allowed the separa-
tion of one of the enantiomers of 3,5-dinitrobenzoyl-leucine in 55%
yield and 98% ee using a catalytic amount of a chiral host
compound based on a cinchona alkaloid. This method allows the
preparation of kilograms of enantiopure material in table-top-sized
equipment that can be operated in a fume cupboard. The
methodology can be easily scaled up to ton amounts as large-
volume centrifugal contactor separators are commercially available
as well.
Introduction
A growing demand for enantiopure compounds has stimu-
lated research and development on efficient manufacture and
separation technologies.1 A well-known technique to obtain
enantiopure compounds on industrial scale is resolution of the
racemate through crystallization.2-4 This technique is not always
applicable, and alternatives have been explored. Examples are
enantioseparation using simulated moving bed5,6 related chro-
matographic techniques,7 and the use of (liquid) membrane
technology.8-10 Liquid-liquid extraction is also considered a
promising technology for chiral separation and examples may
be found in the area of amino acid,11-18 amine, and amino
In this paper we describe the use of centrifugal contactor
separators (CCS) for multistage enantioselective liquid-liquid
(12) Koska, J.; Haynes, C. A. Chem. Eng. Sci. 2001, 56, 5853.
(13) Lindner, W.; La¨mmerhofer, M. Cinchona-based carbamates as chiral
selectors of stereodiscrimination. EP 0912563, 1997.
(14) Pickering, P. J.; Chaudhuri, J. B. Chem. Eng. Sci. 1997, 52, 377.
(15) (a) Reeve, T. B.; Cros, J. P.; Gennari, C.; Piarulli, U.; de Vries, J. G.
Angew. Chem., Int. Ed. 2006, 45, 2449. (b) Dzygiel, P.; Monti, C.;
Piarulli, U.; Gennari, C. Org. Biomol. Chem. 2007, 5, 3464. (c)
Dzygiel, P.; Reeve, T. B.; Piarulli, U.; Krupicka, M.; Tvaroska, I.;
Gennari, C. Eur. J. Org. Chem. 2008, 11, 1253.
* Authors for correspondence. E-mail: Hans-JG.Vries-de@dsm.com;
† University of Groningen, Deptartment of Chemical Engineering.
‡ DSM Pharmaceutical Products.
(16) Takeuchi, T.; Horikawa, R.; Tanimura, T. Anal. Chem. 1984, 56, 1152.
(17) Tan, B.; Luo, G. S.; Wang, H. D. Tetrahedron: Asymmetry 2006, 17,
883.
§ University of Groningen, Stratingh Institute for Chemistry.
(1) Rouhi, A. M. Chem. Eng. News 2003, 81, 45.
(2) Bruggink, A. In Chirality in Industry II; Collins, A. N., Sheldrake,
G. N. , Crosby, J. , Eds.; John Wiley & Sons, Ltd.: Chichester, 1997,
81.
(18) Tan, B.; Luo, G. S.; Wang, J. D. Sep. Purif. Technol. 2007, 53, 330.
(19) Abe, Y.; Shoji, T.; Kobayashi, M.; Qing, W.; Asai, N.; Nishizawa,
H. Chem. Pharm. Bull. 1995, 43, 262.
(20) Steensma, M.; Kuipers, N. J. M.; de Haan, A. B.; Kwant, G. Chirality
2006, 18, 314.
(3) Faigl, F.; Fogassy, E.; Nogradi, M.; Palovics, E.; Schindler, J.
Tetrahedron: Asymmetry 2008, 19, 519.
(21) Tang, L.; Choi, S.; Nandhakumar, R.; Park, H.; Chung, H.; Chin, J.;
Kim, K. J. Org. Chem. 2008, 73, 5996.
(4) Fogassy, E.; Nogradi, M.; Kozma, D.; Egri, G.; Palovics, E.; Kiss, V.
Org. Biomol. Chem. 2006, 4, 3011.
(22) Viegas, R. M. C.; Afonso, C. A. M.; Crespo, J. G.; Coelhoso, I. M.
Sep. Purif. Technol. 2007, 53, 224.
(5) Francotte, E.; Leutert, T.; La Vecchia, L.; Ossola, F.; Richert, P.;
Schmidt, A. Chirality 2002, 14, 313.
(23) Colera, M.; Costero, A. M.; Gavina, P.; Gil, S. Tetrahedron:
Asymmetry 2005, 16, 2673.
(6) Zenoni, G.; Quattrini, F.; Mazzotti, M.; Fuganti, C.; Morbidelli, M.
FlaVour Fragrance J. 2002, 17, 195.
(24) Ohki, A.; Miyashita, R.; Naka, K.; Maeda, S. Bull. Chem. Soc. Jpn.
1991, 64, 2714.
(7) Gavioli, E.; Maier, N. M.; Minguillon, C.; Lindner, W. Anal. Chem.
2004, 76, 5837.
(25) Tang, K.; Chen, Y.; Huang, K.; Liu, J. Tetrahedron: Asymmetry 2007,
18, 2399.
(8) Baragana, B.; Blackburn, A. G.; Breccia, P.; Davis, A. P.; de Mendoza,
J.; Padron-Carrillo, J. M.; Prados, P.; Riedner, J.; de Vries, J. G.
Chem.sEur. J. 2002, 8, 2931.
(26) Steensma, M.; Kuipers, N. J. M.; de Haan, A. B.; Kwant, G. Chem.
Eng. Proc. 2007, 46, 996.
(9) Keurentjes, J. T. F.; Nabuurs, L. J. W. M.; Vegter, E. A. J. Membr.
Sci. 1996, 113, 351.
(27) Steensma, M.; Kuipers, N. J. M.; de Haan, A. B.; Kwant, G. Chem.
Eng. Sci. 2007, 62, 1395.
(10) Maximini, A.; Chmiel, H.; Holdik, H.; Maier, N. W. J. Membr. Sci.
2006, 276, 221.
(28) Steensma, M.; Kuipers, N. J.; de Haan, A. B.; Kwant, G. J. Chem.
Technol. Biotechnol. 2006, 81, 588.
(11) Kellner, K. H.; Blasch, A.; Chmiel, H.; La¨mmerhofer, M.; Lindner,
W. Chirality 1997, 9, 268.
(29) Sutherland, I.; Hewitson, P.; Ignatova, S. J. Chromatogr., A 2009,
1216, 4201.
10.1021/op900152e CCC: $40.75 2009 American Chemical Society
Published on Web 08/19/2009
Vol. 13, No. 5, 2009 / Organic Process Research & Development
•
911