Green Chemistry
Paper
Barrett–Joyner–Halenda (BJH) model. The surface acidity of
the catalyst was estimated by NH3-TPD using the Quanta-
chrome Instrument.
Notes and references
1 B. Yan, L. Z. Tao, Y. Liang and B. Q. Xu, ACS Catal., 2014, 4,
1931–1943.
2 M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker,
F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr,
B. L. Kniep, M. Tovar, R. W. Fischer, J. K. Norskov and
R. Schlogl, Science, 2012, 336, 893–897.
3 T. Tsuchida, S. Sakuma, T. Takeguchi and W. Ueda, Ind.
Eng. Chem. Res., 2006, 45, 8634–8642.
4 C. H. Zhou, H. Zhao, D. S. Tong, L. M. Wu and W. H. Yu,
Catal. Rev., 2013, 55, 369–453.
5 S. Van De Vyver, J. Geboers, P. A. Jacobs and B. F. Sels,
ChemCatChem, 2011, 3, 82–94.
6 M. S. Holm, S. Saravanamurugan and E. Taarning, Science,
2010, 328, 602–605.
7 H. B. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang,
Science, 2007, 316, 1597–1600.
8 Y. L. Wang, W. P. Deng, B. J. Wang, Q. H. Zhang, X. Y. Wan,
Z. C. Tang, Y. Wang, C. Zhu, Z. X. Cao, G. C. Wang and
H. L. Wan, Nat. Commun., 2013, 4, 2141.
9 A. Kruse and A. Gawlik, Ind. Eng. Chem. Res., 2003, 42, 267–
279.
10 J. M. Sun and Y. Wang, ACS Catal., 2014, 4, 1078–1090.
11 J. M. Sun, K. K. Zhu, F. Gao, C. M. Wang, J. Liu,
C. H. F. Peden and Y. Wang, J. Am. Chem. Soc., 2011, 133,
11096–11099.
12 J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, J. Am. Chem.
Soc., 2014, 136, 7587–7590.
13 P. Liu and E. J. M. Hensen, J. Am. Chem. Soc., 2013, 135,
14032–14035.
Catalyst evaluation
The synthesis of acetaldehyde from bio-lactic acid over the
catalysts was carried out in a fixed-bed quartz reactor of 4 mm
inner diameter operated at atmospheric pressure. The catalyst
(0.13–0.14 g, 20–40 meshes) was placed in the middle of the
reactor and quartz wool was placed in both ends. Firstly, the
catalyst was pretreated at the required reaction temperature
(325 °C) for 1.0 h under N2 with high purity (0.1 MPa, 1.0 mL
min−1). The feedstock (20 wt% solution of LA) was then
pumped into the reactor (LA aqueous solution flow rate,
1.0 mL h−1) and driven through the catalyst bed under nitro-
gen. The contact time of the reactant over the catalyst is
about 0.6 s, and the contact time is estimated according to
eqn (1).40,46,55 The liquid products were condensed using an
ice-water bath and analyzed off-line using a SP-6890 gas chromato-
graph with a FFAP capillary column connected to a FID. Quan-
titative analysis of the products was carried out by the internal
standard method using n-butanol as the internal standard.
GC-MS analyses of the samples were performed using the
Agilent 5973N Mass Selective Detector attachment. The reac-
tion tail gas was analyzed using GC with a packed column of
TDX-01 connected to a TCD detector. The conversion of LA
and the selectivity toward acetaldehyde or other by-products
were calculated according to eqn (2) and (3).
3600 ꢀ 273:15 ꢀ Vcat:
tC
¼
ð1Þ
22400 ꢀ ðnLA þ nH O þ nCÞ ꢀ T
2
tC: contact time (s); Vcat.: catalyst volume (mL); nLA: the moles
14 C. Caro, K. Thirunavukkarasu, M. Anilkumar, N. R. Shiju
and G. Rothenberg, Adv. Synth. Catal., 2012, 354, 1327–
1336.
15 I. Abdullahi, T. J. Davis, D. M. Yun and J. E. Herrera, Appl.
Catal., A, 2014, 469, 8–17.
16 J. C. Bauer, G. M. Veith, L. F. Allard, Y. Oyola,
S. H. Overbury and S. Dai, ACS Catal., 2012, 2, 2537–2546.
17 J. J. Murcia, M. C. Hidalgo, J. A. Navio, V. Vaiano,
P. Ciambelli and D. Sannino, Catal. Today, 2012, 196,
101–109.
18 Y. Nakamura, T. Murayama and W. Ueda, ChemCatChem,
2014, 6, 741–744.
19 Y. J. Guan and E. J. M. Hensen, J. Catal., 2013, 305, 135–145.
20 B. Katryniok, S. Paul and F. Dumeignil, Green Chem., 2010,
12, 1910–1913.
of lactic acid passed per hour; n(H O): the moles of water in
2
lactic acid aqueous solution feed passed per hour; nC: the
moles of carrier gas passed per hour; T: reaction temperature (K).
n0 ꢁ n1
Conversion=% ¼
Selectivity=% ¼
ꢀ 100;
ꢀ 100
ð2Þ
ð3Þ
n0
np
n0 ꢁ n1
where n0 is the molar quantity of LA fed into the reactor, n1 is
the molar quantity of LA in the effluent, and np is the molar
quantity of lactic acid converted to acetaldehyde or other
byproducts such as propionic acid, acrylic acid, acetic acid,
and 2,3-pentanedione.
21 C. M. Tang, Y. Zeng, X. G. Yang, Y. C. Lei and G. Y. Wang,
J. Mol. Catal. A: Chem., 2009, 314, 15–20.
22 C. M. Tang, Y. Zeng, P. Cao, X. G. Yang and G. Y. Wang,
Catal. Lett., 2009, 129, 189–193.
Acknowledgements
This work was supported by the Scientific Research Fund of
Sichuan Provincial Educational Department with the project 23 A. Brennfuhrer, H. Neumann and M. Beller, ChemCatChem,
number of 14ZA0128, the Scientific Research Fund of Chemi- 2009, 1, 28–41.
cal Synthesis and Pollution Control Key Laboratory of Sichuan 24 A. Scrivanti, V. Beghetto, M. Zanato and U. Matteoli, J. Mol.
Province with the project number of CSPC-2014-3-1, and the Catal. A: Chem., 2000, 160, 331–336.
Scientific Research Fund of China West Normal University 25 C. M. Tang, X. L. Li and G. Y. Wang, Korean J. Chem. Eng.,
with the project number of 12B019.
2012, 29, 1700–1707.
This journal is © The Royal Society of Chemistry 2014
Green Chem.