Dalton Transactions
Paper
5
5 4 2 4 3 2 2 4
The combined organic phases were dried over anhydrous Synthesis of [(η -C H CH C H S)Mo(NCMe) (CO) ][BF ] (3)
MgSO and the solvents were vacuum evaporated. The crude
4
A flame-dried Schlenk tube was charged with 808 mg of 2
2 mmol) and the complex was dissolved in a mixture of 10 mL
CH Cl and 209 μL (4 mmol) MeCN. The solution was cooled
product was vacuum distilled (105 °C, 10 Pa) to afford yellow
(
1
3
oily compound 1 (7.5 g, 35 mmol, 79%). H NMR (CDCl ;
2
2
3
1
1
3
4
00 MHz; δ): 3.48 (d, J( H, H) = 2.0 Hz, 2H, H , C H ), 4.22 (s,
9
7
4 2
to 0 °C and 274 μL of HBF ·Et O (2 mmol) was added dropwise
3
1
1
2
2
H, CH
2
), 6.40 (t, J( H, H) = 2.0 Hz, 1H, H , C
9
H
7
), 7.00 (dd,
within 30 minutes. After that, the mixture was allowed to warm
to room temperature and stirred overnight. Then, the solvents
were vacuum evaporated and oily residue was washed three
3
1
1
4
1
1
3
J( H, H) = 3.5 Hz, J( H, H) = 1.2 Hz, H , C
4
H
3
S), 7.04 (dd,
3
3
3
1
1
3
1
1
4
J( H, H) = 5.3 Hz, J( H, H) = 3.5 Hz, H , C H S), 7.25 (dd,
4
3
1
1
3
1
1
5
J( H, H) = 5.3 Hz, J( H, H) = 1.2 Hz, H , C
4
H
3
S), 7.32 (t,
times with 7 mL of Et
2
O. Finally, the crude product was recrys-
1
1
5/6
3
1
1
J( H, H) = 7.3 Hz, 1H, H , C
H, H , C H ), 7.45 (d, J( H, H) = 7.3 Hz, 1H, H , C H ),
9 7 9 7
.58 (d, J( H, H) = 7.3 Hz, 1H, H , C H ).
9 7
9
H
7
), 7.38 (t, J( H, H) = 7.3 Hz,
tallized from the CH Cl /Et O mixture to afford an orange
2
2
2
5
/6
3
1
1
4/7
1
7
powder of
3 (968 mg, 1.81 mmol, 91%). Calcd for
3
1
1
4/7
C H N O SMoBF : C, 44.94; H, 3.21; N, 5.24; S, 5.99. Found:
2
0
17
2
2
4
C, 44.58; H, 3.31; N, 5.42; S 5.73. Positive-ion MS (MeCN): m/z
+
+
3
5
(%) = 406 (100) [M–MeCN] , 419 [M–CO] , 378 [M–CO–MeCN].
Synthesis of [(η -C H )(η -C H CH C H S)Mo(CO) ] (2)
3
5
9
6
2
4
3
2
1
H NMR (CD CN; 500 MHz; δ ppm): 2.41 (s, 3H, CH CN), 2.47
3
3
Solution of C
9
H
7
CH
2
C
4
H
3
S (1; 1.06 g, 5 mmol) in 20 ml of
2
1
1
(
s, 3H, CH CN), 4.01 (d, J( H, H) = 16.2 Hz, 1H, CH ), 4.53 (d,
3 2
THF was cooled to −70 °C and 3.1 mL of nBuLi was added
dropwise (1.6 mol l
mixture was slowly allowed to warm to room temperature
within two hours. After that the mixture was added dropwise
via a cannula into a solution of [(η -C
1.55 g, 5 mmol) in 10 mL THF, pre-cooled to −70 °C. The reac-
tion mixture was stirred at room temperature overnight and
then vacuum evaporated to dryness. The solid residue was 13
extracted with hexane (3 × 20 mL). The vacuum evaporation
gives a yellow viscous liquid. The product was purified by
recrystallization from the hexane–ether mixture at −80 °C and
then vacuum dried. Yield: 1.36 g (3.35 mmol, 67%) to afford
yellow powder of 2. Calcd for C H O SMo: C, 56.16; H, 3.97;
2
1
1
3
1
1
2
J( H, H) = 16.2 Hz, 1H, CH ), 5.14 (d, J( H, H) = 2.7 Hz, 1H,
−1
solution in hexane, 5 mmol). The
2
3
1
1
3
H , C H ), 5.99 (d, J( H, H) = 2.7 Hz, 1H, H , C H ), 6.92 (dd,
9
1
6
9 6
3
3
1
3
1
1
J( H, H) = 5.1 Hz, J( H, H) = 3.5 Hz, 1H, H , C H S), 6.94
4
3
3
1
1
4
1
1
4
(
4 3
dd, J( H, H) = 3.5 Hz, J( H, H) = 1.2 Hz, 1H, H , C H S),
3
3
H
5
)Mo(CO)
2
(NCMe)
2
Cl]
3
1
1
4
1
1
2
7
7
H
.18 (t, J( H, H) = 5.1 Hz, J( H, H) = 1.2 Hz, 1H, H , C H S),
4
3
5/6
(
3
1
1
5/6
.54 (t, J( H, H) = 8.3 Hz, 1H, H , C H ), 7.60 (m, 2H, H
H ), 7.69 (d, J( H, H) = 8.3 Hz, 1H, H , C H ).
9 6 9 6
C NMR (C D ; 125.77 MHz; δ ppm): 4.8 (1C, CH CN), 4.9 (1C,
,
9
6
4/7
3
1
1
4/7
, C
6
6
3
3
2
CH CN), 28.4(1C, CH ), 76.3 (1C, C , C H ), 90.7 (1C, C ,
3
2
9
6
1
3a/7a
C
C
9
H
6
), 98,7 (1C, C , C
9
H
6
), 119.1 (1C, C
, C H ), 125.0 (1C, C , C H S), 125.3 (1C, C , C H ),
26.3 (1C, C , C H S), 127.51 (1C, C , C H ), 127.57 (1C, C ,
4 3 9 6
4 3 9 6 9 6
H S), 131.3 (1C, C , C H ), 131.6 (1C, C , C H ), 139.3
1C, CH CN), 139.9 (1C, CH CN), 142.6 (1C, C , C H S), 247.5
3 3 4 3
1C, CO), 248.7 (1C, CO). IR(ATR; cm ): 1971 vs. [ν (CO)], 1889
9 6
, C H ), 119.8 (1C,
3a/7a
4
4/7
9
6
4
3
9
6
3
2
5/6
1
C
(
(
5/6
4/7
1
9
16 2
1
S, 7.87. Found: C, 56.41; H, 4.01; S 7.81. H NMR [C
00 MHz; δ ppm; 4 : 1 mixture of 2-exo (a) and 2-endo (b)]:
6
D
6
;
1
5
−
−1
a
3
1
1
anti
0.91 and −0.80 [2 × (d, J( H, H) = 11.0 Hz, 1H of b, H
,
vs. [ν
s
(CO)], 1054 vs., br. [ν(BF)].
3
1
1
3
1
1
3 5
C H )], 0.00 (tt, J( H, H) = 11.0 Hz, J( H, H) = 7.4 Hz, 1H of
meso
3
1
1
a, H
3 5
, C H ), 0.90 and −0.97 [2 × (d, J( H, H) = 11.0 Hz, 1H
5
anti
3
1
1
syn
Synthesis of [(η -C
5
H
4
CH
2
C
4
H
3
S)Mo(CO)
2
(bpy)][BF
4
] (4)
Cl
), 4.06 (m, 2H of added dropwise via a cannula into a solution of bpy
of a, H , C H )], 2.13 (d, J( H, H) = 7.4 Hz, 2H of a, H
,
3
5
3
1
1
3
1
1
C
3
H
5
), −3.17 (tt, J( H, H) = 11.0 Hz, J( H, H) = 6.4 Hz, 1H The solution of 3 (266 mg, 0.5 mmol) in 5 mL of CH
2
2
was
meso
syn
of a, H
, C
3
H
5
), 3.35 (m, 2H of b, H , C
3
H
5
2
1
1
a, CH ), 4.14 (ABq, J( H, H) = 16.2 Hz, Δδ = 0.12 ppm, 2H of (78.1 mmol, 0.5 mg) in 3 mL of CH Cl . The mixture was
2
2
2
2
2
b, CH
2
), 5.18 (m, 1H of a, H , C
.31 (m, 1H of a, H , C
5
H
4
, 1H of b, H , C
, 1H of b, H , C
5
H
4
), stirred at room temperature overnight. After that, the solvents
), 6.38–6.74 (m, were vacuum evaporated and the red solid residue was washed
H of a, C H CH C H S; 7H of b, C H CH C H S). C NMR three times with 7 mL of Et O. Finally, the crude product was
3
3
5
7
5
H
4
5
H
4
1
3
9
6
2
4
3
9
6
2
4
3
2
(
C
6
D
6
; 125.77 MHz; δ ppm; 2-exo (a) and 2-endo (b)): 28.9 (1C recrystallized from the CH
2
Cl
(263 mg, 0.43 mmol, 87%). Calcd for:
9.6 (1C of a, C , C H ), 55.2 (1C of b, C , C H ), 55.5 (1C C H N O SMoBF C, 51.31; H, 3.15; N, 4.61; S, 5.26. Found:
2 2
/Et O mixture to afford a red
1
/3
2 2 3 5
of a, CH ), 29.5 (1C of b, CH ), 48.7 (1C of a, C , C H ), powder of 4
4
of b, C , C
C
1
/3
1/3
3
5
3
5
26 19
2
2
4
1
/3
3
3
3 5 9 6
H ), 75.9 (1C of b, C , C H ), 78.5 (1C of a, C , C, 51.17; H, 3.54; N, 4.42; S 5.18. Positive-ion MS (MeCN): m/z
2
2
+ 1
9
H
6
), 84.6 (1C of a, C , C H ), 90.0 (1C of b, C , C H ), (%) = 521 (100) [M] . H NMR (CD CN; 500 MHz; δ ppm): 4.17
3 5 9 6 3
2
2
3
1
1
3
1
1
9
0.07 (1C of b, C , C H ), 90.08 (1C of a, C , C H ), 98.2 (1C of (d, J( H, H) = 15.7 Hz, 1H, CH ), 4.77 (d, J( H, H) = 15.7 Hz,
3
5
9
6
2
3
3
3a/7a
3
1
1
2
b, C , C
C
C H ), 112.2 (1C of b, C
1
1
9
H
6
), 100.8 (1C of a, C , C
), 111.7 (1C of a, C
9
H
6
), 111.5 (1C of a, C
), 112.0 (1C of b, C
,
,
2 9 6
1H, CH ), 5.64 (d, J( H, H) = 2.8 Hz, 1H, H , C H ), 6.48 (d,
3
a/7a
3a/7a
3
1
1
3
5,6
9
H
6
, C
9
H
6
9 6 9 6
J( H, H) = 2.8 Hz, 1H, H , C H ), 6.71 (m, 2H, H , C H ),
3
a/7a
3
1
1
4
1
1
4
, C H ), 122.3, 123.7, 124.2, 6.85 (dd, J( H, H) = 7.4 Hz, J( H, H) = 1.3 Hz 1H, H , C H S),
9 6 4 3
9
6
3
1
1
3
3
1
1
4 3
24.3, 124.4, 124.6, 124.68, 124.73, 124.8, 125.3, 125.4, 6.91 (d, J( H, H) = 3.8 Hz, 1H, H , C H S), 6.98 (d, J( H, H) =
25.8, 127.3, 128.7 (7C of a, C
2
3
1
1
4/7
9
H
6
CH
2
C
4
H
3
S; 7C of b, 3.8 Hz, 1H, H , C
4
H
3
S), 7.13 (d, J( H, H) = 7.9 Hz, 1H, H
,
1
1
3
1
1
4/7
C H CH C H S), 144.2 (1C of a, C , C H S), 144.5 (1C of b, C , C H ), 7.21 (d, J( H, H) = 7.9 Hz, 1H, H , C H ), 7.59 (t,
C
CO), 241.5 (1C of b, CO). IR(ATR; cm ): 1938 vs. [ν
1
9
6
2
4
3
4
3
9
6
9 6
3
3
1
1
3/8
1
1
4
H
3
S), 237.9 (1C of a, CO), 238.5 (1C of a, CO), 240,8 (1C of b,
8 2
J( H, H) = 5.7 Hz, 1H, H , C10H N ), 7.63 (t, J( H, H) =
−1
3/8
3
1
1
a 8 2
(CO)], 5.7 Hz, 1H, H , C10H N ), 8.10, (t, J( H, H) = 8.1 Hz, 2H,
4
,7
3
1
1
5,6
860 vs. [ν (CO)].
H , C H N ), 8.33 (d, J( H, H) = 8.1 Hz, 2H, H , C H N ),
10 8 2 10 8 2
s
This journal is © The Royal Society of Chemistry 2019
Dalton Trans.