the direct preparation of 1-indanones.4 In all cases, however,
these transformations generally require the use of at least an
equivalent amount of either a Lewis or Brønsted acid to be
effective, and the reaction mixtures often must be heated. These
methods are extremely harsh and generate large amounts of
acidic waste for disposal. Because of these concerns, alternative
methods for the preparation of indanones that avoid strongly
acidic conditions, such as transition metal-catalyzed carbocyli-
zations5a-c and isomerization of arylpropargyl alcohols,5d-f
continue to be of interest. Another approach is the development
of a catalytic version of the intramolecular electrophilic substitu-
tion reaction. Indanones were obtained by treating 3-arylpro-
panoic acids with 5-20 mol % Tb(OTf)3 at 250 °C.6 Opting to
modify the substrate to achieve milder reaction conditions,
Fillion et al. found that catalytic quantities of some metal triflates
were effective at cyclizing 5-benzyl derivatives of Meldrum’s
acid to yield 1-indanones.7 The intramolecular acylation, which
liberates acetone and carbon dioxide, was performed using 10
mol % Sc(OTf)3 in nitromethane at 100 °C.
Conversion of 2-Alkylcinnamaldehydes to
2-Alkylindanones via a Catalytic Intramolecular
Friedel-Crafts Reaction
Gary B. Womack,* John G. Angeles, Vincent E. Fanelli, and
Christie A. Heyer
Firmenich, Corporate R&D DiVision, P.O. Box 5880,
Princeton, New Jersey 08543
ReceiVed May 23, 2007
Recently, Yonezawa et al.8 and we9 have reported that the
acetals of 2-alkylcinnamaldehydes will cyclize in the pres-
ence of acid catalysts to yield 1-alkoxy-2-alkyl-1H-indenes
(2). Yonezawa reported the isolation of the indenyl ethers
in moderate yields after treating (E)-2-alkylcinnamaldehydes
(1) with 4 equiv of trimethyl orthoformate and 1 equiv of
BF3‚OEt2 for 3 h at 25 °C (Scheme 1). The reaction also
occurred when starting with the dimethyl acetal of 1a, and a
mechanism was proposed in which intramolecular electrophilic
substitution proceeds through an allylic oxocarbenium ion 4.
We have found that this cyclization can be accomplished with
catalytic quantities of FeCl3 and that the resulting indenyl ethers
can be converted in high yields into 2-alkylindanones. In
addition to achieving a catalytic, intramolecular Friedel-Crafts
reaction leading to indanones, the process uses the more
environmentally benign reaction conditions of FeCl3 as the
catalyst and methyl acetate as the solvent.
The preparation of indanones by the intramolecular acylation
of 3-arylpropanoic acids or halides requires the use of non-
catalytic acid promoters. In the presence of 5-10 mol %
FeCl3, in situ generated dimethyl acetals of (E)-2-alkylcin-
namaldehydes cyclize to 1-methoxy-2-alkyl-1H-indenes in
good-to-high yields. The 1-methoxyindenes were converted
in high yield into 2-alkylindanones by treatment with
triethylamine, to effect isomerization to the isomeric enol
ethers, followed by acid-catalyzed hydrolysis. Thus, a
catalytic, intramolecular Friedel-Crafts reaction leading to
2-alkylindanones from 2-alkylcinnamaldehydes was devel-
oped.
Table 1 presents selected optimization experiments using 1a
as the substrate. At 40 mol % FeCl3 in dichloromethane (DCM),
1a was consumed within 1 h at rt in the presence of 1.1 equiv
Intramolecular Friedel-Crafts acylation of 3-arylpropanoic
acids1 and 3-arylpropanoyl halides,2 or intramolecular alkylation
using 1-aryl-2-propen-1-ones,3 are well-established methods for
(4) For reviews on intramolecular acylation yielding 1-indanones, see
(a) Heaney, H. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2, pp 753-768. (b)
Larock, R. ComprehensiVe Organic Transformations, 2nd ed.; Wiley-
VCH: New York, 1999; pp 1422-1433. (c) Popp, F. D.; McEwen, W. E.
Chem. ReV. 1958, 58, 321-401. (d) Johnson, W. S. Org. React. 1944, 2,
114-177.
(5) (a) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y. Tetrahedron Lett.
1999, 40, 4089-4092. (b) Larock, R. C.; Pletnev, A. A. Tetrahedron Lett.
2002, 43, 2133-2136. (c) Larock, R. C.; Gagnier, S. V. J. Am. Chem. Soc.
2003, 125, 4804-4807. (d) Hayashi, T.; Shintani, R. Org. Lett. 2005, 7,
2071-2073. (e) Shintani, R.; Okamoto, K.; Hayashi, T. J. Am. Chem. Soc.,
2005, 127, 2872-2873. (f) Yamabe, H.; Mizuno, A.; Kusama, H.; Iwasawa,
N. J. Am. Chem. Soc., 2005, 127, 3248-3249.
(6) Cui, D.-M.; Zhang, C.; Kawamura, M.; Shimada, S. Tetrahedron Lett.
2004, 45, 1741-1745.
(7) Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. J. Org. Chem. 2005,
70, 1316-1327.
(8) (a) Jobashi, T.; Kawai, A.; Kawai, S.; Maeyama, K.; Oike, H.;
Yoshida, Y.; Yonezawa, N. Tetrahedron 2006, 62, 5717-5724. (b) Jobashi,
T.; Maeyama, K.; Noguchi, K.; Yoshida, Y.; Yonezawa, N. Bull. Chem.
Soc. Jpn. 2006, 79, 627-633.
(9) Womack, G. B.; Snowden, R. L.; Mosimann, H.; Birkbeck, A. A.
Process for Producing Indenol Esters or Ethers. WO Pat. Appl. WO 2005/
113473 A2, December 1, 2005.
(1) (a) Ho, T.-L.; Lee, K.-Y.; Chen, C.-K. J. Org. Chem. 1997, 62, 3365-
3369. (b) Budhhram, R. S.; Palaniswamy, V. A.; Eisenbraun, E. J. J. Org.
Chem. 1986, 51, 1402-1406. (c) Premasagar, V.; Palaniswamy, V. A.;
Eisenbraun, E. J. J. Org. Chem. 1981, 46, 2974-2976. (d) Koo, J. J. Am.
Chem. Soc. 1953, 75, 1891-1895. (e) Rendy, R.; Zhang, Y.; McElrea, A.;
Gomez, A.; Klumpp, D. A. J. Org. Chem. 2004, 69, 2340-2347.
(2) (a) House, H. O.; Hudson, C. B. J. Org. Chem. 1970, 647-651. (b)
Hulin, B.; Koreeda, M. J. Org. Chem. 1984, 207-209. (c) Yamato, T.;
Hideshima, C.; Surya Prakash, G. K.; Olah, G. A. J. Org. Chem. 1991, 56,
3955-3957. (d) Hanessian, S.; Ma, J. Tetrahedron Lett. 2001, 42, 8785-
8788. (e) Buckley, T. F., III.; Rapoport, H. J. Am. Chem. Soc. 1980, 102,
3056-3062.
(3) (a) Vial, C.; Bernardinelli, G.; Schneider, P.; Aizenberg, M.; Winter,
B. HelV. Chim. Acta 2005, 88, 3109-3117. (b) Bhattacharya, A.; Segmuller,
B.; Ybarra, A. Synthetic Commun. 1996, 26, 1775-1784. (c) Sartori, G.;
Bigi, F.; Maggi, R.; Bernardi, G. L. Tetrahedron Lett. 1993, 34, 7339-
7342. (d) Roussel, C.; Rajoharison, H. G.; Bizzari, L.; Shaimi, L. J. Org.
Chem. 1988, 53, 683-685. (e) Suzuki, T.; Ohwada, T.; Shudo, K. J. Am.
Chem. Soc. 1997, 119, 6774-6780. (f) Burckhalter, J. H.; Fuson, R. C. J.
Am. Chem. Soc. 1948, 70, 4184-4186. (g) Fuson, R. C.; Ross, W. E.;
McKeever, C. H. J. Am. Chem. Soc. 1938, 60, 2935-2936. (h) Koltunov,
K. Y.; Walspurger, S.; Sommer, J. Tetrahedron Lett. 2005, 46, 8391-8394.
10.1021/jo070952o CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/10/2007
7046
J. Org. Chem. 2007, 72, 7046-7049