2 L. De Luca, G. Giacomelli and A. Porcheddu, Org. Lett., 2001, 3,
3041–3043.
3 P. P. Borbat, A. J. Costa-Filho, K. A. Earle, J. K. Moscicki and J. H.
Freed, Science, 2001, 291, 266–269.
4 J. F. W. Keana, Chem. Rev., 1978, 78, 37–64.
5 Q. Wang, Y. Zhao, L. X. Song, Z. Q. Fan and L. X. Feng, Macromol.
Chem. Phys., 2001, 202, 448–452.
6 E. P. Talsi, N. V. Semikolenova, V. N. Panchenko, A. P. Sobolev, D. E.
Babushkin, A. A. Shubin and V. A. Zakharov, J. Mol. Catal. A: Chem.,
1999, 139, 131–137.
7 D. Benoit, V. Chaplinski, R. Braslau and C. J. Hawker, J. Am. Chem.
Soc., 1999, 121, 3904–3920.
8 C. J. Hawker, Acc. Chem. Res., 1997, 30, 373–382.
9 G. V. Romanenko, N. V. Podberezskaya and N. V. Pervukhina, J.
Struct. Chem., 1993, 34, 440–468.
10 N. V. Pervukhina, G. V. Romanenko and N. V. Podberezskaya, J.
Struct. Chem., 1994, 35, 367–390.
11 P. Jaitner, W. Huber, G. Huttner and O. Scheidsteger, J. Organomet.
Chem., 1983, 259, C1–C5.
12 P. Jaitner, W. Huber, A. Gieren and H. Betz, J. Organomet. Chem.,
1986, 311, 379–385.
13 A. Caneschi, A. Grand, J. Laugier, P. Rey and R. Subra, J. Am. Chem.
Soc., 1988, 110, 2307–2309.
Fig. 2 X-Ray structure of (TEMPO)TiCl3. Relevant dimensions (Å and °):
Ti(1)–O(1) 1.839(3), Ti(1)–N(1) 2.112(4), N(1)–O(1) 1.433(4), Ti(1)–Cl(1)
2.258(2); Ti(1)–O(1)–N1(1) 79.4(2), Ti(1)–N(1)–O(1) 58.8(2), Cl(1)–
Ti(1)–O(1) 136.6(1), Cl(2)–Ti(1)–O(1) 104.1(1), C(1)–N(1)–O(1)
110.6(4), Cl(1)–Ti(1)–Cl(2) 103.6(1), Cl(1)–Ti(1)–Cl(3) 104.3(1), Cl(2)–
Ti(1)–Cl(3) 99.1(1).
14 T. R. Felthouse, T. Y. Dong, D. N. Hendrickson, H. S. Shieh and M. R.
Thompson, J. Am. Chem. Soc., 1986, 108, 8201–8214.
15 P. Jaitner, W. Huber, A. Gieren and H. Betz, Z. Anorg. Allg. Chem.,
1986, 538, 53–60.
16 M. H. Dickman and R. J. Doedens, Inorg. Chem., 1982, 21, 682–684.
17 M. Okunaka, G. Matsubayashi and T. Tanaka, Bull. Chem. Soc. Jpn.,
1977, 50, 1070–1073.
18 W. J. Evans, J. M. Perotti, R. J. Doedens and J. W. Ziller, Chem.
Commun., 2001, 2326–2327.
19 M. Armbrecht, W. Maringgele, A. Meller, M. Noltemeyer and G. M.
Sheldrick, Z. Naturforsch., Teil B., 1985, 40, 1113–1122.
20 U. Losehand, N. W. Mitzel and D. W. H. Rankin, J. Chem. Soc., Dalton
Trans., 1999, 4291–4297.
hydroxylamine and the ancillary ligation at Ti. The TEMPO
1
2
ligand of 1 binds h to CpTiCl2 whereas Me2NO binds h in
CpTiCl2(ONMe2).35 For the less-sterically hindered TiCl3
2
fragment, the TEMPO ligand binds h , but appears to cause
some distortion as the Cl(1)–Ti(1)–Cl(2) and Cl(1)–Ti(1)–Cl(3)
bond angles are expanded at the expense of the the Cl(3)–Ti(1)-
Cl(2) angle (Fig. 2). These results, along with those of the
groups of Evans18 and Mulvey21 imply that TEMPO can be
reduced by group 4, lanthanide or s-block elements to form
stable and sterically demanding anionic ligands. Investigations
of the reactivity of these compounds in catalytic reactions are
ongoing and will be reported elsewhere.
21 G. C. Forbes, A. R. Kennedy, R. E. Mulvey and P. J. A. Rodger, Chem.
Commun., 2001, 1400–1401.
22 D. Gatteschi, Adv. Mater., 1994, 6, 635–645.
23 P. Jaitner and W. Huber, Inorg. Chim. Acta, 1987, 129, L45–L46.
24 V. A. Golubev, G. N. Voronina, L. I. Chernaya, F. S. Dyachkovskii and
P. E. Matkovskii, Zh. Obsch. Khim., 1977, 47, 1825–1832.
25 P. B. Brindley and M. J. Scotton, J. Organomet. Chem., 1981, 222,
89–96.
We acknowledge the National Science Foundation for
financial support (NSF-CHE 9910240). M. K. M. acknowl-
edges graduate fellowship support from the Fannie and John
Hertz Foundation.
26 N. W. Mitzel, S. Parsons, A. J. Blake and D. W. H. Rankin, J. Chem.
Soc., Dalton Trans., 1996, 2089–2093.
27 K. Wieghardt, I. Tolksdorf, J. Weiss and W. Swiridoff, Z. Anorg. Allg.
Chem., 1982, 490, 182–190.
28 M. Kilner and G. Parkin, J. Organomet. Chem., 1986, 302, 181–191.
29 1H NMR (C6D6, 400 MHz), d 6.16(s, Cp-H, 5H), 1.16 (s, CH3, 12 H),
1.00–1.25 (m, –CH2CH2CH2–, 6H). 13C NMR (C6D6, 400 MHz), d
119.8, 63.2, 39.4, 26.7, 16.6.
Notes and references
†
Crystal data for CpTiCl2(TEMPO) (1): C14H23Cl2NOTi, M = 340.15,
monoclinic, a = 7.835(1), b = 12.019(2), c = 17.930(3) Å, U = 1661.3(7)
Å3, T = 180 K, space group P21/n (no. 14), Z = 4, m(Mo-Ka) = 8.29 cm21
,
4836 total reflections, 2403 unique reflections (Rint = 0.059) used in all
calculations. The final wR (F2) = 0.088 (all data).
Crystal data for (TEMPO)TiCl3 (2): C9H18Cl3NOTi, M = 310.51,
orthorhombic, a = 8.796(1), b = 12.266(1), c = 12.563(1) Å, U =
1355.4(4) Å3, T = 135 K, space group P212121 (no. 19), Z = 4, m(Mo-Ka)
= 11.98 cm21, 6067 total reflections, 1328 unique reflections used in all
calculations. The final wR (F2) = 0.080 (all data).
30 Z. Ciunik, J. Mol. Struct., 1997, 412, 27–37.
31 J. Laugier, J. M. Latour, A. Caneschi and P. Rey, Inorg. Chem., 1991,
30, 4474–4477.
32 M. Frauenkron, N. Tzavellas, N. Klouras and C. P. Raptopoulou,
Monatsh. Chem., 1996, 127, 1137–1143.
suppdata/cc/b1/b110147a/ for crystallographic data in CIF or other
electronic format.
33 A. R. Hermes and G. S. Girolami, Inorg. Synth., 1998, 32, 309–310;
CAUTION: this reaction can lead to violent exotherms!.
34 1H NMR (C6D6, 400 MHz, 18 °C), d 0.80 (s, CH3, 6H), 0.89 (s, CH3,
6H), 0.95–1.80 (m, –CH2CH2CH2–, 6H). 13C NMR (C6D6, 400 MHz,
18 °C), d 67.1, 37.4, 30.8, 24.0, 16.0.
1 A. E. J. deNooy, A. C. Besemer and H. vanBekkum, Synthesis
(Stuttgart), 1996, 1153–1174.
35 D. L. Hughes, M. Jimeneztenorio, G. J. Leigh and D. G. Walker, J.
Chem. Soc., Dalton Trans., 1989, 2389–2395.
CHEM. COMMUN., 2002, 502–503
503