European Journal of Inorganic Chemistry
10.1002/ejic.201801521
FULL PAPER
Computational details
Acknowledgments
Method: The density functional theory (DFT) simulations of the
adsorption and reaction process involved in ORR on Pt surfaces were
performed by using the Vienna ab initio simulation package (VASP).[43-46]
The ion-electron interaction was described with the projector augmented
This work was financially supported by the Natural Science
Foundation of China (21776077), the Shanghai Natural Science
Foundation (17ZR1407300 and 17ZR1407500), the Program for
Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning, the Shanghai Rising-Star
Program (17QA1401200), the State Key Laboratory of Organic-
Inorganic Composites (oic-201801007) and the Open Project of
State Key Laboratory of Chemical Engineering (SKLChe-15C03).
We thank the use of XPS Facility within Analytical Centre of
Dalian Institute of Chemical Physics.
method.[
47,48]
wave (PAW)
Electron exchange-correlation was
represented by the functional of Revised Perdew, Burke, and Ernzerhof
RPBE) of generalized gradient approximation (GGA).[49,50] A cutoff
(
energy of 400 eV was used for the plane-wave basis set. The Hellman-
Feynman forces on each ion was minimized to be less than 0.03 eV/Å.
Models: The Pt(111), Pt(100) were respectively modelled using a p(3 x
3) supercell slab model, containing four atomic layers slabs, with a
relaxation of the top two layers. The Brillouin-zone integration has been
performed with a 3 x 3 x 1 Monkhorst-Pack k-point mesh[51,52] for the
above models. For Pt(211), a p(1 x 3) supercell with ten atomic layers
was chosen as the step model, including a relaxation of the top six layers.
The Brillouin-zone integration has been performed with a 4 x 3 x 1
Monkhorst-Pack k-point mesh for Pt(211) model. For all surfaces, a
vacuum thickness of 12 Å was used to avoid the interaction from the top
supercells. All of the surface models were constructed based on bulk fcc
Pt crystal whose lattice constant was 3.98 Å.
Keywords: Sustainable chemistry • Catalysis • Platinum • Active
site • Density functional calculations
[
[
[
[
[
1]
2]
3]
4]
5]
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T.
F. Jaramillo, Science 2017, 355, eaad4998.
P. Z. Chen, Y. Tong, C. Z. Wu, Y. Xie, Acc. Chem. Res. 2018, 51, 2857-
2
866.
D. Y. Chung, J. M. Yoo, Y. E. Sung, Adv. Mater. 2018, 30, 1704123-
704143.
Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44,
060-2086.
1
Free energy calculations: The overpotential during the ORR process
can be determined by examining the reaction free energies of the
different elementary steps.[53] In order to obtain the reaction free energy
of each elementary step of ORR, we calculated the adsorption free
energy of O*, OH* and OOH*. Since it is difficult to obtain the exact free
energy of O, OH and OOH radicals in the electrolyte solution, the
adsorption free energy ΔGads of O*, OH* and OOH* are relative to the
2
R. Chattotꢀ, O. L. Bacq, V. Beermann, S. Kühl, J. Herranz, S. Henning, L.
Kühn, T. Asset, L. Guétaz, G. Renou, J. Drnec, P. Bordetꢀ, A. Pasturelꢀ,
A. Eychmüller, T. J. Schmidtꢀ, P. Strasser, L. Dubau, F. Maillard, Nat.
Mater. 2018, 17, 827-833.
[
6]
M. F. Li,1 Z. P. Zhao, T. Cheng, A. Fortunelli, C. Y. Chen, R. Yu, Q. H.
Zhang, L. Gu, B. Merinov, Z. Y. Lin, E. Zhu, T. Yu, Q. Y. Jia, J. H. Guo,
L. Zhang, W. A. Goddard III, Y. Huang, X. F. Duan, Science 2016, 354,
1414-1419.
free energy of stoichiometrically appropriate amounts of H
g), defined as follows:
GO* G(H O(g) * O*H (g)) O*
2 2
O (g) and H
(
H2
H2O
*
2
2
(7)
[
[
7]
8]
L. Su, W. Jia, C. M. Li, Y. Lei, ChemSusChem 2014, 7, 361-378.
Y. H. Bing, H. S Liu, L. Zhang, D. Ghosh, J. J. Zhang, Chem. Soc. Rev.
2010, 39, 2184-2202.
(EO* EH2 EH2O E ) T (S SH2 SH2O S* )
*
O*
(EZPE(O*) EZPE(H2 ) EZPE(H2O) EZPE(*)
)
[
9]
N. Jung, D. Y. Chung, J. Ryu, S. J. Yoo, Y. E. Sung, Nano Today 2014
9, 433-456.
GOH* G(H O(g) * OH *1/ 2H (g))
0.5 H2 H2O *
2
2
OH*
(8)
(EOH* 0.5 EH2 EH2O E ) T (S 0.5 SH2 SH2O S* )
[10] V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A.
*
OH*
Lucas, N. M. Markovic, Science 2007, 315, 493-497.
(EZPE(OH*) 0.5 EZPE(H2 ) EZPE(H2O) EZPE(*) )
[
11] A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018,
18, 2302−2312.
1
GOOH* G(2H O(g) * OOH *3 / 2H (g))
2
2
[
12] A. M. G. Marín, R. Rizoa, J. M. Feliu, Catal. Sci. Technol. 2014, 4, 1685-
OOH* 1.5 H2 2 H2O *
(
9)
1698.
(EOOH* 1.5 EH2 2 EH2O E* )
T (SOOH* 1.5 SH2 2 SH2O S* )
(EZPE(OOH*) 1.5 EZPE(H2 ) 2 EZPE(H2O) EZPE(*)
[13] S. Sui, X. Y. Wang, X. T. Zhou, Y. H. Su, S. Riffatc, C. J. Liu, J. Mater.
Chem. A 2017, 5, 1808-1825.
[
[
14] Y. Nie, L. Li, Z. D. Wei, Chem. Soc. Rev. 2015, 44, 2168-2201.
)
15] J. X. Wang, N. M. Markovic, R. R. Adzic, J. Phys. Chem. B 2004, 108,
4
127-4133.
16] Y. J. Deng, G. K. H. Wiberg, A. Zana, M. Arenz, Electrochim. Acta 2016,
04, 78-83.
For each elementary step, the reaction free energy was defined as the
difference between free energies of the final and initial states and was
given by the following expression:
[
[
2
17] M. Nesselberger, S. Ashton, J. C. Meier, I. Katsounaros, K. J. J.
Mayrhofer, M. Arenz, J. Am. Chem. Soc. 2011, 133, 17428-17433.
18] K. Kinoshita, J. Electrochem. Soc. 1990, 137, 845-848.
G E ZPE TS G +G Gfield
(10)
U
pH
[
[
19]
I. Katsounaros, S. Cherevko, A. R. Zeradjanin, K. J. J. Mayrhofer,
Where ΔE is the difference of adsorption energy between product and
Angew. Chem. Int. Ed. 2014, 53, 102-121.
reactant molecules adsorbed on catalyst surface, obtained from DFT
[
20] M. H. Shao, A. Peles, K. Shoemaker, Nano Lett. 2011, 11, 3714-3719.
21] A. Anastasopoulos, J. C. Davies, L. Hannah, B. E. Hayden, C. E. Lee, C.
Milhano, C. Mormiche, L. Offin, ChemSusChem 2013, 6, 1973-1982.
22] J. Greeley, J. Rossmeisl, A. Hellman, J. K. Norskov, Z. Phys. Chem.
2007, 221, 1209-1220.
U
calculations. ΔG = eU, where U is the electrode potential relative to the
standard hydrogen electrode. T is the temperature, and e is the charge
transferred. ΔZPE is the change of zero-point energy computed by DFT
[
[
calculations. ΔS is the entropy change from the DFT calculations. ΔGpH is
the correction of the H+ free energy by the concentration dependence of
+
[23] N. Markovic, H. Gasteiger, P. N. Ross, J. Electrochem. Soc. 1997, 144,
591-1597.
the entropy: ∆GpH=-k
B
Tln[H ]. k
B
is Boltzmann constant. ΔGfield is the
1
electric field in the double layer. We neglect this in the work. The free
+
-
Tln[H+].
[24] C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. T. Kim, K. J. J.
energy of H + e is calculated by 1/2 GH2 -eU+k
B
Mayrhofer, H. Kim, M. Choi, Nat. Commun. 2016, 7, 10922-10931.
This article is protected by copyright. All rights reserved.