5440 J. Phys. Chem. B, Vol. 107, No. 23, 2003
Sastre et al.
specificity to direct the synthesis toward a particular structure.
Therefore, templates have to be rigid molecules. Table 2 shows
the energies of SDA cations in the different zeolites considered
(13) Lewis, D. W.; Catlow, C. R. A.; Thomas, J. M. Chem. Mater. 1996,
, 1112.
8
(
14) Toby, B. H.; Khosrovani, N.; Dartt, C. B.; Davis, M. E.; Parise, J.
B. Microporous Mesoporous Mater. 2000, 39, 77.
15) Catlow, C. R. A.; Coombes, D. S.; Lewis, D. W.; Pereira, J. C. G.
Chem. Mater. 1998, 10, 3249.
16) Lewis, D. W.; Sankar, G.; Wyles, J. K.; Thomas, J. M.; Catlow,
C. R. A.; Willock, D. J. Angew. Chem., Int. Ed. Engl. 1997, 36, 2675.
17) van de Graaf, B.; Njo, S. L.; Smirnov, K. S. ReV. Comput. Chem.
000, 14, 137.
18) Wagner, P.; Nakagawa., Y.; Lee, G. S.; Davis, M. E.; Elomari, S.;
+
and in the gas phase.
(
•
Entering into the zeolite also has an effect of stabilization
(
due to the interaction with the zeolite walls, where mainly the
oxygen atoms, which are closer to the guest molecule than to
(
+
the T atoms, stabilize the positively charged SDA (E4 )
2
+
ESDA -zeo). This can be calculated from the corresponding
(
Lennard-Jones plus electrostatic terms between the zeolite and
Medrud, R. C.; Zones, S. I. J. Am. Chem. Soc. 2000, 122, 263.
+
(19) Shantz, D. F.; Lobo, R. F.; Fild, C.; Koller, H. Stud. Surf. Sci. Catal.
000, 130, 845.
the SDA (see eq 5). This term is related to the energetics of
2
+
the nucleation because it takes into account not only the SDA
(20) Shantz, D. F.; Schmedt auf der G u¨ nne, J.; Koller, H.; Lobo, R. F.
conformation around which the zeolite grows but also its major
J. Am. Chem. Soc. 2000, 122, 6659.
(21) Shantz, D. F.; Fild, C.; Koller, H.; Lobo, R. F. J. Phys. Chem. B
1999, 103, 10858.
+
contribution that is made by the silicate units closer to the SDA .
+
+
Similarly, SDA -SDA interactions appear when several
molecules are occluded within channels or cavities (E5 )
(22) Sabater, M. J.; Sastre, G. Chem. Mater. 2001, 12, 4520.
(23) Borch, R. F.; Bernstein, M. D.; Dupont Durst, H. J. Am. Chem.
+
+
ESDA -SDA ). This repulsive energy between positively charged
Soc. 1971, 93, 2897.
+
SDA molecules can be calculated from the Lennard-Jones and
(24) Gale, J. D. J. Chem. Soc., Faraday Trans. 1997, 93, 629.
electrostatics terms as indicated in eq 4. Table 2 shows the
(25) Sanders, M. J.; Leslie, M.; Catlow, C. R. A. J. Chem. Soc., Chem.
+
+
+
Commun. 1984, 1271.
corresponding energies (E4 + E5 ) ESDA -zeo + ESDA -SDA )
for the two organic cations considered in â, EU-1, ZSM-11,
and ZSM-12 structures. The dominant contribution is ∆E4,
which amounts to at least 90% of the total Lennard-Jones short-
range contributions between the zeolite and the organic cations.
(
(
26) Jackson, R. A.; Catlow, C. R. A. Mol. Simul. 1988, 1, 207.
27) Henson, N. J.; Cheetham, A. K.; Gale, J. D. Chem. Mater. 1994,
6
, 1647.
28) Henson, N. H.; Cheetham, A. K.; Gale, J. D. Chem. Mater. 1996,
8, 664.
(
•
The zeolite will be higher in energy than when isolated
(29) Modelling of Structure and ReactiVity in Zeolites; Catlow, C. R.
A., Ed.; Academic Press: London, 1992.
because of the deformation of the framework produced by the
+
(30) Catlow, C. R. A.; Bell, R. G.; Gale, J. D. J. Mater. Chem. 1994, 4,
incorporation of the SDA (E6 ) ∆Ezeo). This term can be
calculated from the final geometry of the system by taking off
the SDA molecules, calculating the energy of the corresponding
7
81.
31) Kiselev, A. V.; Lopatkin, A. A.; Shulga, A. A. Zeolites 1985, 5,
261.
(32) Oie, T.; Maggiora, T. M.; Christoffersen, R. E.; Duchamp, D. J.
Int. J. Quantum Chem., Quantum Biol. Symp. 1981, 8, 1.
33) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54,
24.
34) Harrison, R.; Nichols, J.; Straatsma, T.; Dupuis, M.; Bylaska, E.;
(
“
stressed” zeolite (Ezeo′), and subtracting the energy of the
isolated zeolite (Ezeo). Finally, ∆Ezeo ) Ezeo′ - Ezeo. The
corresponding energies of â, EU-1, ZSM-11, and ZSM-12 are
shown in Table 2.
(
7
(
Fann, G.; Windus, T.; Apra, E.; Anchell, J.; Bernholdt, D.; Borowski, P.;
Clark, T.; Clerc, D.; Dachsel, H.; de Jong, B.; Deegan, M.; Dyall, K.;
Elwood, D.; Fruchtl, H.; Glendenning, E.; Gutowski, M.; Hess, A.; Jaffe,
J.; Johnson, B.; Ju, J.; Kendall, R.; Kobayash, R.; Kutteh, R.; Lin, Z.;
Littlefield, R.; Long, X.; Meng, B.; Nieplocha, J.; Niu, S.; Rosing, M.;
Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wolinski,
K.; Wong, A.; Zhang, Z. NWChem, A Computational Chemistry Package
for Parallel Computers, version 4.0; Pacific Northwest National Labora-
tory: Richland, WA, 2000.
References and Notes
(
1) Davis, M. E.; Lobo, R. F. Chem. Mater. 1992, 4, 756.
(2) Petrovic, I.; Navrotsky, A.; Davis, M. E.; Zones, S. I. Chem. Mater.
1
2
(
35) Sastre, G.; Lewis, D. W.; Catlow, C. R. A. J. Phys. Chem. 1996,
1
00, 6722.
(
(
(
(
6) Barrer, R. M. Zeolites 1981, 1, 130.
(
01.
36) Sastre, G.; Fornes, V.; Corma, A. J. Phys. Chem. B 2002, 106,
7) Barrer, R. M. Stud. Surf. Sci. Catal. 1985, 24, 1.
8) Lok, B. M.; Cannan, T. R.; Messina, C. A. Zeolites 1983, 3, 282.
9) Davis, M. E. Acc. Chem. Res. 1993, 26, 111.
7
(
(
37) Rappe, A. K.; Goddard, W. A., III. J. Phys. Chem. 1995, 95, 3358.
38) Piccione, P. M.; Laberty, C.; Yang, S.; Camblor, M. A.; Navrotsky,
(
10) Hong, S. B.; Cho, H. M.; Davis, M. E. J. Phys. Chem. 1993, 97,
622.
11) Corma, A.; Diaz-Caba n˜ as, M. J.; Fornes, V. Angew. Chem., Int.
Ed. 2000, 39, 2346.
12) Lewis, D. W.; Freeman, C. F.; Catlow, C. R. A. J. Phys. Chem. B
995, 99, 11194.
A.; Davis, M. E. J. Phys. Chem. B 2000, 104, 10001.
1
(39) Davis, M. E. CATTECH 1997, 1, 19.
(
(40) Akporiaye, D. E.; Price, G. D. Zeolites 1989, 9, 321.
(41) Kramer, G. J.; de Man, A. J. M.; van Santen, R. A. J. Am. Chem.
Soc. 1991, 113, 6435.
(
1