Organometallics
Article
added 1 mol % of [Ni(dmpe)2] (2.2 mg, 0.0061 mmol). After the
mixture was stirred for 96 h at 70 °C, no polymerization was observed.
Reaction of 9,9-Dihydrosilafluorene with [Ni(dmpe)2]. In a
glovebox, to a C6D6 solution (1.5 mL) of 9,9-dihydrosilafluorene (82
mg, 0.45 mmol) was added [Ni(dmpe)2] (35.9 mg, 0.10 mmol). A
white solid immediately precipitated from the reaction mixtures, which
was collected by filtration, washed with toluene (1 mL × 3), and dried
in vacuo to give insoluble poly(1,1-silafluorene) (71 mg, 88%). Solid-
state CPMAS 29Si{1H} NMR (119 MHz, room temperature): δ −32.8,
−41.1, −49.9. IR (KBr): 2216 (νSi−H) cm−1.
ASSOCIATED CONTENT
* Supporting Information
Tables, figures, and a CIF file giving crystallographic data for 1,
NMR and IR spectra for poly-I, poly-II, 1, and 2, and additional
polymerization data. This material is available free of charge via
■
S
AUTHOR INFORMATION
Corresponding Author
Notes
■
Preparation of [Pd(SiC12H8)4(dmpe)] (1). To a toluene solution
(5 mL) of [PdMe2(dmpe)] (666 mg, 2.32 mmol) was added a toluene
solution (15 mL) of 9,9-dihydrosilafluorene (1.91 g, 10.5 mmol). The
reaction mixture was heated at 80 °C with stirring for 120 h, resulting
in precipitation of a yellow crystalline solid. The solid was collected by
filtration, washed with THF (3 mL × 7), and dried in vacuo to give 1
as a pale yellow solid (1.01 g, 44%). The reaction mixture was
confirmed to contain a bis(silyl)palladium precursor of 1, [Pd-
(SiHC12H8)2(dmpe)] (2), which was prepared by the silyl ligand
exchange of [Pd(SiHPh2)2(dmpe)] (vide infra). Crystals of 1 suitable
for X-ray crystallography were obtained from the reaction mixture
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by Grants-in-Aid for
Scientific Research (B) (No. 24350027) and for Young
Chemists (No. 23750059) from the Ministry of Education,
Culture, Sports, Science, and Technology of Japan. We thank
our colleagues at the Center for Advanced Materials Analysis,
Technical Department, Tokyo Institute of Technology, for
elemental analysis. We thank Dr. Yoshiyuki Nakamura (Tokyo
Institute of Technology) for assistance in the measurement of
solid-state NMR spectra.
1
without stirring for a few days. H NMR (400 MHz, C4D8O, room
temperature): δ 7.82 (d, 4H, C12H8, JH−H = 7.2 Hz), 7.72 (d, 4H,
C12H8, JH−H = 7.6 Hz), 7.54 (d, 4H, C12H8, JH−H = 7.2 Hz), 7.49 (d,
4H, C12H8, JH−H = 8.0 Hz), 7.17 (t, 4H, C12H8, JH−H = 7.2 Hz), 7.10 (t,
4H, C12H8, JH−H = 8.0 Hz), 7.03 (t, 4H, C12H8, JH−H = 7.6 Hz), 6.87 (t,
4H, C12H8, JH−H = 7.2 Hz), 1.47 (d, 4H, PCH2, JP−H = 18 Hz), 0.53 (d,
12H, PCH3, JP−H = 9.2 Hz). Solid-state CPMAS 29Si{1H} NMR (119
MHz, room temperature): δ 8.88 (d, JP−Si = 146 Hz), −27.4 (s). Solid-
state CPMAS 31P{1H} NMR (243 MHz, room temperature): δ 21.8.
The solid-state 13C NMR spectrum showed multiple signals in the
aromatic region. Anal. Calcd for C54H48P2PdSi4: C, 66.34; H, 4.95.
Found: C, 62.51; H, 5.07. It was difficult to obtain satisfactory data
from the elemental analysis because purification by recrystallization
was not feasible due to the low solubility of 1.
REFERENCES
■
(1) Reviews: (a) West, R. J. Organomet. Chem. 1986, 300, 327−346.
(b) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359−1410.
(2) Reviews: (a) Tilley, T. D. Acc. Chem. Res. 1993, 26, 22−29.
(b) Yamashita, H.; Tanaka, M. Bull. Chem. Soc. Jpn. 1995, 68, 403−
419. (c) Gauvin, F.; Harrod, J. F.; Woo, H.-G. Adv. Organomet. Chem.
1998, 42, 363−405. (d) Corey, J. Y. Adv. Organomet. Chem. 2004, 51,
1−52. (e) Clark, T. J.; Lee, K.; Manners, I. Chem. Eur. J. 2006, 12,
8634−8648.
(3) (a) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111, 3757−
3758. (b) Woo, H.-G.; Tilley, T. D. J. Am. Chem. Soc. 1989, 111,
8043−8044. (c) Woo, H.-G.; Walzer, J. F.; Tilley, T. D. J. Am. Chem.
Soc. 1992, 114, 7047−7055.
Preparation of [Pd(SiHC12H8)2(dmpe)] (2). To a toluene
solution (5 mL) of [Pd(SiHPh2)2(dmpe)] (300 mg, 0.48 mmol)
was added 9,9-dihydrosilafluorene (219 mg, 1.20 mmol). The reaction
mixture was stirred at room temperature for 24 h, resulting in
precipitation of a white solid. The solid was collected by filtration,
washed with hexane (2 mL × 2), and dried in vacuo to give 2 (236 mg,
(4) Corey, J. Y.; Zhu, X.-H. J. Organomet. Chem. 1992, 439, 1−17.
(5) (a) Gauvin, F.; Harrod, J. F. Can. J. Chem. 1990, 68, 1638−1640.
(b) Sakakura, T.; Lautenschlager, H. -J.; Nakajima, M.; Tanaka, M.
Chem. Lett. 1991, 913−916. (c) Banovetz, J. P.; Stein, K. M.;
Waymouth, R. M. Organometallics 1991, 10, 3430−3432. (d) Li, H.;
Gauvin, F.; Harrod, J. F. Organometallics 1993, 12, 575−577.
(e) Dioumaev, V. K.; Rahimian, K.; Gauvin, F.; Harrod, J. F.
Organometallics 1999, 18, 2249−2255. (f) Obora, Y.; Tanaka, M. J.
Organomet. Chem. 2000, 595, 1−11.
1
79%). H NMR (400 MHz, C4D8O, room temperature): δ 7.91 (d,
4H, C12H8, JH−H = 7.6 Hz), 7.88 (d, 4H, C12H8, JH−H = 7.6 Hz), 7.31
(t, 4H, C12H8, JH−H = 7.6 Hz), 7.17 (t, 4H, C12H8, JH−H = 7.6 Hz), 5.39
(apparent triplet, 2H, SiH, JP−H = 7.0 Hz), 1.42 (d, 4H, PCH2, JP−H
=
17 Hz), 0.61 (d, 12H, PCH3, JP−H = 8.4 Hz). 13C{1H} NMR (100
MHz, C4D8O, room temperature): δ 148.0 (apparent triplet, C12H8,
JP−C = 1.7 Hz), 147.0 (apparent triplet, C12H8, JP−C = 6.2 Hz), 135.0
(C12H8), 128.5 (C12H8), 126.7 (C12H8), 121.3 (C12H8), 29.4 (apparent
triplet, PCH2, JP−C = 21 Hz), 12.0 (d, PCH3, JP−C = 2.5 Hz). 29Si{1H}
(6) Boudjouk, P.; Rajkumar, A. B.; Parker, W. L. J. Chem. Soc., Chem.
Commun. 1991, 245−246.
(7) (a) Fontaine, F.-G.; Kadkhodazadeh, T.; Zargarian, D. Chem.
Commun. 1998, 1253−1254. (b) Fontaine, F.-G.; Zargarian, D.
Organometallics 2002, 21, 401−408. (c) Fontaine, F.-G.; Zargarian,
D. J. Am. Chem. Soc. 2004, 126, 8786−8794.
NMR (79 MHz, C4D8O, room temperature): δ −14.6 (dd, JPtrans−Si
=
165 Hz, JPcis−Si = 16 Hz). 31P{1H} NMR (161 MHz, C4D8O, room
temperature): δ 16.9. IR (KBr) 2020, 2047 (νSi−H) cm−1. Anal. Calcd
for C30H34P2PdSi2: C, 58.20; H, 5.54. Found: C, 58.03; H, 5.41.
X-ray Crystal Structure Analysis. Single crystals of 1 suitable for
an X-ray diffraction study were mounted on MicroMounts
(MiTeGen). The crystallographic data of 1 were collected on a
Rigaku Saturn CCD area detector equipped with monochromated Mo
Kα radiation (λ = 0.71073 Å) at 113 K. Calculations were carried out
using the Crystal Structure program package, version 4.0, for
Windows. The positional and thermal parameters of non-hydrogen
atoms were refined anisotropically on F2 by full-matrix least-squares
methods using SHELXL-97.31 Hydrogen atoms were placed at
calculated positions and refined with a riding mode on their
corresponding carbon atoms. Crystallographic data of 1 are given in
the Supporting Information.
(8) Smith, E. E.; Du, G.; Fanwick, P. E.; Abu-Omar, M. M.
Organometallics 2010, 29, 6527−6533.
(9) (a) Yamamoto, K.; Okinoshima, H.; Kumada, K. J. Organomet.
Chem. 1970, 23, C7−C8. (b) Ojima, I.; Inaba, S.; Kogure, T. J.
Organomet. Chem. 1973, 55, C7−C8. (c) Goikhman, R.; Milstein, D.
Chem. Eur. J. 2005, 11, 2983−2988. (d) Toal, S. J.; Sohn, H.; Zakarov,
L. N.; Kassel, W. S.; Golen, J. A.; Rheingold, A. L.; Trogler, W. C.
Organometallics 2005, 24, 3081−3087. (e) Jackson, S. M.; Chisholm,
D. M.; McIndoe, J. S.; Rosenberg, L. Eur. J. Inorg. Chem. 2011, 327−
330.
(10) Shimada, S.; Rao, M. L. N.; Hayashi, T.; Tanaka, M. Angew.
Chem., Int. Ed. 2001, 40, 213−216.
(11) Koizumi, T.; Osakada, K.; Yamamoto, T. Organometallics 1998,
17, 5721−5727.
1042
dx.doi.org/10.1021/om301052f | Organometallics 2013, 32, 1037−1043