X. Qu et al. / Journal of Solid State Chemistry 184 (2011) 246–251
251
and excited levels of Tb3+ nonradiatively; such surface adsorption
groups have large phonon energy and can act as nonradiative
relaxation channels to bridge the emitting levels of Tb3+ and the
ground states, both giving rise to an increase of nonradiative
transition rate [43]. As stated above, samples S1–4 are synthesized
with different condition and therefore exhibit different morphol-
ogy and size. From samples S1 to S4, the size becomes larger
gradually, as a result, the surface to volume ratio decreases and the
surface contamination should be decreased, and the nonradiative
relaxation rate therefore decrease and the lifetime become longer
accordingly. The lifetime evolutions may support the remarkably
enhanced green emission from S1 to S4 (see Fig. 6B) observed under
the same measurement conditions. The present changes in photo-
luminescence intensity further indicate that luminescence proper-
ties of nanosized CeF3:Tb3+ are sensitive to the shape, particle size,
structural defects and surface chemistry of sample.
[3] X. Wang, Y. Li., Chem. Eur. J. 9 (2003) 5627–5635.
[4] B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, A. Libchaber,
Science 298 (2002) 1759–1762.
[5] H. Mai, Y. Zhang, R. Si, Z. Yan, L. Sun, L. You, C. Yan., J. Am. Chem. Soc. 128 (2006)
6426–6436.
[6] X. Bai, H. Song, G. Pan, Z. Liu, S. Lu, W. Di, X. Ren, Y. Lei, Q. Dai, L. Fan., Appl. Phys.
Lett. 88 (2006) 143104.
[7] L. Wang, Y. Li., Chem. Mater. 19 (2007) 727–734.
[8] J.L. Lemyre, A.M. Ritcey, Chem. Mater. 17 (2005) 3040–3043.
[9] L. Ma, W. Chen, X. Xu, L. Xu, X. Ning, Mater. Lett. 64 (2010) 1559–1561.
[10] X. Xiao, B. Yan, Y. Song, Cryst. Growth Des. 9 (2003) 136–144.
[11] Z. Miao, Z. Liu, K. Ding, B. Han, S. Miao, G. An, Nanotechnology 18 (2007)
125605–12509.
[12] A.P. Alivisatas, Science 271 (1996) 933–937.
[13] Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim,
H.Q. Yan, Adv. Mater. 15 (2003) 353–389.
[14] H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan., J. Phys. Chem. C 111 (2007)
13730–13739.
[15] P. Rahman, M. Green, Nanoscale 1 (2009) 214–224.
[16] J.H. Zeng, Z.H. Li, J. Su, L. Wang, R. Yan, Y. Li, Nanotechnology 17 (2006)
3549–3555.
[17] A.J. Wojtowicz, M. Balcerzyk, E. Berman, A. Lempicki, Phys. Rev. B 49 (1994)
14880–14894.
[18] K. Wei, C.X. Guo, J. Deng, C.S. Shi., J. Elec., Spectrosc. Relat. Phenom. A 79 (1996)
83–85.
4. Conclusions
[19] H. Lian, M. Zhang, J. Liu, Z. Ye, J. Yan, C. Shi., Chem. Phys. Lett. 395 (2004)
362–365.
[20] C. Li, X. Liu, P. Yang, C. Zhang, H. Lian, J. Lin., J. Phys. Chem. C 112 (2008)
2904–2910.
In summary, 0D nanoparticles and 2D nanoplates CeF3 and
CeF3:Tb3+ have been successfully fabricated through a facile and
effective polyol process. The content of NH4F and reactant concen-
tration plays a critical role in controlling the final morphology and
size of the product. With low content of NH4F, 0D nanoparticles were
obtained. When the content of NH4F exceeded a certain value,
hexagonal and regular 2D nanoplates were formed. With increasing
the content of NH4F and reactant concentration the size of products
increases. Furthermore, PL spectra showed that the CeF3 and
CeF3:Tb3+ samples exhibited characteristic emissions of Ce3+ (5d–4f)
and Tb3+ (f–f), respectively. The lifetime of Tb3+ in CeF3:Tb3+
samples become longer with increasing the size of samples because
the nonradiative processes at or near the surface of the nanoma-
terials are much reduced. The as-synthesized luminescent product
may have some potential applications in the areas of light display.
[21] X. Wang, J. Zhuang, Q. Peng, Y. Li., Inorg. Chem. 45 (2006) 6661–6665.
[22] Z.L. Wang, Z.W. Quan, P.Y. Jia, C.K. Lin, Y. Luo, Y. Chen, J. Fang, W. Zhou,
C.J. O’Connor, J. Lin., Chem. Mater. 18 (2006) 2030–2037.
[23] L. Zhu, Q. Li, X.D. Liu, J.Y. Li, Y.F. Zhang, J. Meng, X.Q. Cao., J. Phys. Chem. C 111
(2007) 5898–5903.
[24] H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Chem. Mater. 19 (2007) 4514–4522.
[25] R. Si, Y.W. Zhang, H.P. Zhou, L.D. Sun, C.H. Yan., Chem. Mater. 19 (2007) 18–27.
[26] C.H. Liu, H. Wang, X. Li, D.P. Chen, J. Mater. Chem. 19 (2009) 3546–3553.
[27] C.H. Liu, H. Wang, X.R. Zhang, D.P. Chen., J. Mater. Chem. 19 (2009) 489–496.
[28] X.G. Peng, Adv. Mater. 15 (2003) 459–463.
[29] Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y.T. Qian, Cryst. Growth Des.
5 (2005) 147–150.
[30] J. Yang, C.X. Li, Z.W. Quan, D.Y. Kong, X.M. Zhang, P.P. Yang, J. Lin, Cryst. Growth
Des. 8 (2009) 695–699.
[31] C.X. Li, J. Yang, Z.W. Quan, P.P. Yang, D.Y. Kong, J. Lin, Chem. Mater. 19 (2007)
4933–4942.
[32] R. Qin, H. Song, G. Pan, X. Bai, B. Dong, S. Xie, L. Liu, Q. Dai, X. Qu, X. Ren, H. Zhao,
Cryst. Growth Des. 9 (2009) 1750–1756.
[33] C. Li, C. Zhang, Z. Hou, L. Wang, Z.Q.H. Lian, J. Lin, J. Phys. Chem. C 113 (2009)
2332–2339.
Acknowledgments
[34] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos,
Nature 404 (2000) 59–61.
[35] G. Blasse, A. Bril, J. Chem. Phys. 51 (1969) 3252–3254.
[36] L. Yu, H. Song, Z. Liu, L. Yang, S. Lu, Z. Zheng, J. Phys. Chem. B 109 (2005)
11450–11455.
[37] M. Yu, J. Lin, J. Fu, H.J. Zhang, Y.C. Han, J. Mater. Chem. 13 (2003) 1413–1419.
[38] H. Lai, A. Bao, Y. Yang, Y. Tao, H. Yang, Y. Zhang, L. Han, J. Phys. Chem. C 112
(2008) 282–286.
This research was supported by Basic Science Research Program
through the NRF funded by the Ministry of Education, Science and
Technology (2009-0073255) and also this research was supported
by National Core Research Center (NCRC) program through the
National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (2010-0001-226).
[39] H. Guo, Appl. Phys. B 84 (2006) 365–369.
[40] J.C. Bourcet, F.K. Fong, J. Chem. Phys. 60 (1974) 34–39.
[41] G. Blasse, B.C. Grabmaier, Luminescent Materials, Springer-Verlag, Berlin,
Heidelberg, 1994.
References
[42] T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, M. Anpo, J. Phys.
Chem. B 101 (1997) 10631–10637.
[1] K. Kompe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Moller, M. Haase., Angew.
Chem. Int. Ed. 42 (2003) 5513–5516.
[43] X. Qu, H. Song, G. Pan, X. Bai, B. Dong, H. Zhao, Q. Dai, H. Zhang, R. Qin, S. Lu, J.
Phys. Chem. C 113 (2009) 5906–5911.
[2] G.A. Kumar, C.W. Chen, J. Ballato, R.E. Riman., Chem. Mater. 19 (2007)
1523–1528.