Inorganic Chemistry
Article
Branca, R. M. M.; Lehtio, J.; Graslund, A.; Lubitz, W.; Siegbahn, P. E.;
̈
̈
Structural Database.
Hogbom, M. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 17189−17194.
̈
(10) Dassama, L. M. K.; Krebs, C.; Bollinger, J. M., Jr; Rosenzweig, A.
C.; Boal, A. K. Biochemistry 2013, 52, 6424−6436.
NMR spectra of H5(F-HXTA), 1′, a titration of F-HXTA
with FeCl2, and of a 1′/2′ mixture. Discussion of the
method used to calculate T1 time constants for 1, and
complete data set and results of F-HXTA metal
competition experiments (PDF)
Crystallographic information file (CIF) for 1 (CIF)
Crystallographic information file (CIF) for 2 (CIF)
(11) The oxidized states are believed to be {MnIV(1)FeIII(2)} for Ct
R2c and {MnIV(1)FeIV(2)} for Gk R2lox, see ref 6.
(12) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry;
Wiley: New York, 1988; pp 697−724.
(13) A search of the IUPAC stability constant database yields 347
entries for ligands with known stability constants for both FeII and
MnII. In only 20 cases is the corresponding MnII complex more stable.
2015).
AUTHOR INFORMATION
Corresponding Author
■
(14) Wang, J.; Martell, A. E.; Motikatis, R. J. Inorg. Chim. Acta 2001,
322, 47−55.
(15) (a) Tereniak, S. J.; Carlson, R. K.; Clouston, L. J.; Young, V. G.,
Jr.; Bill, E.; Maurice, R.; Chen, Y.-S.; Kim, H. J.; Gagliardi, L.; Lu, C. C.
Notes
The authors declare no competing financial interest.
J. Am. Chem. Soc. 2014, 136, 1842−1855. (b) Carboni, M.; Clem
́
ancey,
M.; Molton, F.; Pecaut, J.; Lebrun, C.; Dubois, L.; Blondin, G.; Latour,
́
J. M. Inorg. Chem. 2012, 51, 10447−10460. (c) Wang, Z.; Holman, T.
R.; Que, L., Jr. Magn. Reson. Chem. 1993, 31, S78−S84. (d) Holman,
T. R.; Wang, Z.; Hendrich, M. P.; Que, L., Jr. Inorg. Chem. 1995, 34,
134−139.
ACKNOWLEDGMENTS
■
We are grateful for financial support provided by Bucknell
University and the donors of the American Chemical Society
Petroleum Research Fund (Grant 50877-UNI3). W.D.K.
thanks Dr. David Rovnyak for helpful discussion of quantitative
paramagnetic NMR.
́
(16) (a) Laborda, S.; Clerac, R.; Anson, C. E.; Powell, A. K. Inorg.
Chem. 2004, 43, 5931−5943. (b) Meng, B.-H.; Gao, F.; Zhu, M.-L.
Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2004, 60, m308−
m310. (c) Gao, F.; Meng, B.-H.; Wei, Y.-B. Acta Crystallogr., Sect. C:
Cryst. Struct. Commun. 2004, 60, m360−m362. (d) Ma, L.; Lu, L.; Zhu,
M.; Wang, Q.; Gao, F.; Yuan, C.; Wu, Y.; Xing, S.; Fu, X.; Mei, Y.;
Gao, X. J. Inorg. Biochem. 2011, 105, 1138−1147.
REFERENCES
■
(1) Crichton, R. R. Biological Inorganic Chemistry; Elsevier:
Amsterdam, 2012.
(17) Murch, B. P.; Bradley, F. C.; Boyle, P. D.; Papaefthymiou, V.;
Que, L., Jr. J. Am. Chem. Soc. 1987, 109, 7993−8003.
(18) (a) Bertini, I.; Luchinat, C. NMR of Paramagnetic Molecules in
Biological Systems; Benjamin/Cummings: Menlo Park CA, 1986.
(b) Bertini, I.; Turano, P.; Vila, A. J. Chem. Rev. 1993, 93, 2833−2932.
(19) Ming, L. J.; Jang, H. G.; Que, L., Jr. Inorg. Chem. 1992, 31, 359−
364.
(2) (a) Stubbe, J.; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Chem.
Rev. 2003, 103, 2167−2201. (b) Sazinsky, M. H.; Lippard, S. J. Acc.
Chem. Res. 2006, 39, 558−566. (c) Schenk, G.; Mitic, N.; Gahan, L. R.;
́
Ollis, D. L.; McGeary, R. P.; Guddat, L. W. Acc. Chem. Res. 2012, 45,
1593−1603. (d) Peterson, R. L.; Kim, S.; Karlin, K. D. In
Comprehensive Inorganic Chemistry II; Reedijk, J. K. P., Ed.; Elsevier:
Oxford, 2013; Vol. 3, pp 149−177. (e) Grazina, R.; Pauleta, S. R.;
Moura, J. J. G.; Moura, I. In Comprehensive Inorganic Chemistry II;
Reedijk, J. K. P., Ed.; Elsevier: Oxford, 2013; Vol. 3, pp 103−148.
(3) (a) Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.;
O’Halloran, T. V. Science 1999, 284, 805−808. (b) Rosenzweig, A. C.
Chem. Biol. 2002, 9, 673−677. (c) Philpott, C. C. J. Biol. Chem. 2012,
287, 13518−13523.
(20) (a) Evans, D. F. J. Chem. Soc. 1959, 2003−2005. (b) Sur, S. K. J.
Magn. Reson. 1989, 82, 169−173.
(21) Girerd, J.-J.; Journaux, Y. In Physical Methods in Bioinorganic
Chemistry: Spectroscopy and Magnetism; Que, L., Jr., Ed.; University
Science Books: Sausalito, CA, 2000; pp 321−374.
(22) (a) Heinrich, C. A.; Seward, T. M. Geochim. Cosmochim. Acta
1990, 54, 2207−2221. (b) Gammons, C. H.; Seward, T. M. Geochim.
Cosmochim. Acta 1996, 60, 4295−4311.
(4) (a) Kakhlon, O.; Cabantchik, Z. I. Free Radical Biol. Med. 2002,
33, 1037−1046. (b) Tottey, S.; Waldron, K. J.; Firbank, S. J.; Reale, B.;
Bessant, C.; Sato, K.; Cheek, T. R.; Gray, J.; Banfield, M. J.; Dennison,
C.; Robinson, N. J. Nature 2008, 455, 1138−1142. (c) Hider, R. C.;
Kong, X. L. BioMetals 2011, 24, 1179−1187.
(23) Que, L., Jr.; True, A. E. Prog. Inorg. Chem. 1990, 38, 97−200.
(24) Borovik, A. S.; Murch, B. P.; Que, L., Jr.; et al. J. Am. Chem. Soc.
1987, 109, 7190−7191.
́
(25) Belle, C.; Beguin, C.; Hamman, S.; Pierre, J.-L. Coord. Chem.
(5) (a) Cotruvo, J. A., Jr.; Stubbe, J. Annu. Rev. Biochem. 2011, 80,
733−767. (b) Stubbe, J.; Cotruvo, J. A., Jr. Curr. Opin. Chem. Biol.
2011, 15, 284−290. (c) Cotruvo, J. A., Jr.; Stubbe, J. Metallomics 2012,
4, 1020−1036.
Rev. 2009, 253, 963−976.
(26) Brunetti, A. P.; Nancollas, G. H.; Smith, P. N. J. Am. Chem. Soc.
1969, 91, 4680−4683.
(27) Anderegg, G. Helv. Chim. Acta 1960, 43, 414−424.
(28) Irving, H.; Mellor, D. H. J. Chem. Soc. 1962, 5222−5237.
(29) If K2 = K3, there would necessarily be a FeII/MnII ratio that
produces equimolar amounts of 1, 2, and 3. Inspection of Figure 4
shows that this is clearly not the case.
(6) (a) Griese, J. J.; Srinivas, V.; Hogbom, M. JBIC, J. Biol. Inorg.
̈
Chem. 2014, 19, 759−774. (b) Bollinger, J. M., Jr; Jiang, W.; Green, M.
T.; Krebs, C. Curr. Opin. Struct. Biol. 2008, 18, 650−657. (c) Carboni,
M. L.; Latour, J.-M. Coord. Chem. Rev. 2011, 255, 186−202.
(7) Hogbom, M.; Stenmark, P.; Voevodskaya, N.; McClarty, G.
̈
(30) (a) Millero, F. J.; Yao, W.; Aicher, J. Mar. Chem. 1995, 50, 21−
39. (b) Perrin, D. D. J. Chem. Soc. 1962, 2197−2200.
(31) Initial conditions: 9 mM F-HXTA; 18 mM FeCl2; 18 mM
MnCl2. Calculated speciation: 2.62 mM 3, 5.86 mM 1, and 0.525 mM
2.
Science 2004, 305, 245−248.
(8) (a) Jiang, W.; Yun, D.; Saleh, L.; Barr, E. W.; Xing, G.; Hoffart, L.
M.; Maslak, M. A.; Krebs, C.; Bollinger, J. M. Science 2007, 316, 1188−
1191. (b) Voevodskaya, N.; Lendzian, F.; Ehrenberg, A.; Graslund, A.
̈
̈
FEBS Lett. 2007, 581, 3351−3355. (c) Andersson, C. S.; Ohrstrom,
̈
(32) Initial conditions: 9 mM F-HXTA; 9 mM FeCl2; 9 mM MnCl2.
Calculated speciation: 3.85 mM 3, 2.58 mM 1, and 2.58 mM 2.
M.; Popovic-Bijelic, A.; Graslund, A.; Stenmark, P.; Hogbom, M. J. Am.
́
́
̈
̈
Chem. Soc. 2012, 134, 123−125. (d) Dassama, L. M. K.; Boal, A. K.;
Krebs, C.; Rosenzweig, A. C.; Bollinger, J. M., Jr. J. Am. Chem. Soc.
2012, 134, 2520−2523.
(33) (a) Delgado, R.; Frausto da Silva, J. J. R.; Vaz, M. C.; Paoletti,
́
P.; Micheloni, M. J. Chem. Soc., Dalton Trans. 1989, 133−137.
(b) Paoletti, P.; Ciampolini, M. Inorg. Chem. 1967, 6, 64−68.
(34) Miyake, H.; Kato, N.; Kojima, Y.; Sugihara, A. Inorg. Chim. Acta
1994, 223, 121−124.
(9) (a) Andersson, C. S.; Hogbom, M. Proc. Natl. Acad. Sci. U. S. A.
̈
2009, 106, 5633−5638. (b) Hogbom, M. JBIC, J. Biol. Inorg. Chem.
2010, 15, 339−349. (c) Griese, J. J.; Roos, K.; Cox, N.; Shafaat, H. S.;
̈
I
Inorg. Chem. XXXX, XXX, XXX−XXX