164
V.V. Atuchin et al. / Journal of Solid State Chemistry 187 (2012) 159–164
of K3WO3F3 oxyfluorotungstate. Crystal structure is defined for G0,
G1 and G2 phases subsequently formed on cooling from T4452 to
Tꢂ300 K. Complete O/F disorder at anion position is a characteristic
of cubic G0 phase. Partial O/F ordering is obtained for G1 and G2
intermediate phases. Last G3 phase with complete O/F ordering is
not found at T4110 K. Thus, existence of G3-K3WO3F3 modification
is not confirmed up to now.
Effective technology developed for crystal growth of low-
temperature G2 modification yields crystals suitable for optical
measurements. As a result optical transparency range of 0.3–9.4 mm
and band gap Eg¼4.32 eV were first time defined for G2-K3WO3F3
crystal. This indicates that oxyfluorides are transparent in UV
spectral range and this chemical class is promising for creation of
new UV materials.
DFT calculations reveals that in G2-K3WO3F3 the indirect band
gap is governed by the O 2p orbitals located at the valence band
maximum and the W 5d orbitals located at the conduction band
minimum. Reasonable level of nonlinear optical coefficients and
comparatively low birefringence are predicted for G2-K3WO3F3,
space group Cm, by model calculations. The results, however, show
a possibility of nonlinear optical properties for oxyfluorotungstates.
[7] K.R. Heier, et al., Inorg. Chem. 38 (1999) 762.
[8] M.S. Molokeev, et al., Powder Diffr. 22 (2007) 227.
[9] M.R. Marvel, et al., J. Am. Chem. Soc. 129 (2007) 13963.
[10] V.D. Fokina, et al., Ferroelectrics 347 (2007) 60.
[11] M.R. Marvel, et al., Z. Anorg. Allg. Chem. 635 (2009) 869.
[12] P.A. Maggard, et al., J. Solid State Chem. 175 (2003) 27.
[13] G. Pe´raudeau, et al., Solid State Commun. 27 (1978) 515.
[14] J. Ravez, et al., Ferroelectrics 26 (1980) 767.
[15] V.V. Atuchin, et al., Chem. Phys. Lett. 493 (2010) 83.
[16] M.S. Molokeev, et al., Phys. Solid State 53 (2011) 834.
[17] G. Peraudeau, et al., Solid State Commun. 27 (1978) 591.
[18] J.P. Chaminade, et al., Mater. Res. Bull. 21 (1986) 1209.
[19] S.C. Abrahams, et al., Acta Crystallogr.. B 37 (1981) 1332.
[20] F.J. Brink, et al., J. Solid State Chem. 174 (2003) 44.
[21] A.A. Udovenko, et al., Acta Crystallogr. B 64 (2008) 305.
[22] I.N. Flerov, et al., Ferroelectrics 346 (2007) 77.
[23] I.N. Flerov, et al., Phys. Solid State 50 (2008) 515.
[24] I.N. Flerov, et al., Crystallogr. Rep. 56 (2011) 9.
[25] Z.G. Ye, et al., Ferroelectrics 124 (1991) 281.
[26] J.M. Chamberlain, et al., Cryst. Growth Des. 10 (2010) 4868.
[27] A.A. Ekimov, et al., Ferroelectrics 401 (2010) 168.
[28] V.V. Atuchin, et al., Solid State Commun. 150 (2010) 2085.
[29] V.V. Atuchin, et al., Cryst. Growth Des. 11 (2011) 2479.
[30] S.V. Mel’nikova, et al., Phys. Solid State 48 (2006) 117.
[31] S.V. Mel’nikova, et al., Phys. Solid State 52 (2010) 2168.
[32] T.S. Moss, Optical Properties of Semiconductors, Butterworth, London, 1961.
[33] A. Le Bail, Powder Diffr. 19 (2004) 249.
[34] M.C. Payne, et al., Rev. Mod. Phys. 64 (1992) 1045.
[35] S.J. Clark, et al., Z. Kristallogr. 220 (2005) 567.
[36] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.
Acknowledgments
[37] J.P. Perdew, et al., Phys. Rev. Lett. 77 (1996) 3865.
[38] H.J. Monkhorst, et al., Phys. Rev. B 13 (1976) 5188.
[39] L. Bellaiche, et al., Phys. Rev. B 61 (2000) 7877.
[40] V.F. Kokorina, Glasses for Infrared Optics, CRC Press, Boca Raton, FL, USA,
1996., p. 236.
[41] T.I. Shishelova, et al., Workshop on Spectroscopy. Water in minerals,
Akademiya estestvoznaniy, 2010, (in Russian) ISBN 978-5-91327-093-1.
[42] J. Aarik, et al., Thin Solid films 466 (2004) 41.
This study is partly supported by SB RAS Project No. 34. ZSL
acknowledges the funding support of No. 91022036, 11174297,
2010CB630701, and 2011CB922204 in China. Authors also wish to
thank V. D. Fokina for microcaloric measurements.
[43] A.P. Yelisseyev, et al., Avtometriya 4 (1988) 112. in Russian.
[44] C.T. Chen, et al., Appl. Phys. B 80 (2005) 1.
[45] C.D. McMillen, et al., J. Cryst. Growth 310 (2008) 2033.
[46] R.K. Li, et al., Inorg. Chem. 49 (2010) 1561.
References
[1] C.T. Chen, et al., Appl. Phys. B 97 (2009) 9.
[2] C.T. Chen, et al., J. Opt. Soc. Am. B 26 (2009) 1519.
[3] Y. Zhou, et al., Opt. Express 17 (2009) 20033.
[4] Z.S. Lin, et al., J. Appl. Phys. 109 (2011) 073721.
[5] G. Pausewang, et al., Z. Anorg. Allg. Chem. 364 (1969) 69.
[6] J. Ravez, J. Phys. III Fr. 7 (1997) 1129.
[47] X. Wang, et al., Opt. Mater. 29 (2007) 1658.
[48] H. Huang, et al., J. Appl. Phys. 106 (2009) 103107.
[49] G.C. Zhang, et al., Cryst. Growth Des. 9 (2009) 3137.
[50] K. Xu, et al., Opt. Express 16 (2008) 17735.