RESEARCH FRONT
Characterization of Palladium Dicarbene Complexes
987
(500.84): C, 50.36; H, 4.43; N, 11.19%. Anal. Found: C, 50.54;
H, 4.39; N, 10.99%.
atoms. All hydrogen atoms were put at calculated positions.
All non-hydrogen atoms were generally given anisotropic dis-
placement parameters in the final model. A summary of the
most important crystallographic data is given in Table 1.
CCDC723157(A·2H2O), 723158(2·CH2Cl2·H2O), 723159(3),
and 723160 (4·2CH3CN) contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
1,1ꢀ-Methylene-(3,3ꢀ-dimethyldibenzimidazolin-
2-ylidene)di(trifluoroacetato)palladium(II) 3
Complex 3 was synthesized in analogy to 2 from 1 (0.127 g,
0.234 mmol) and AgO2CCF3 (0.103 g, 0.468 mmol) and iso-
lated as a white amorphous solid after drying. Transparent
cubic crystals of 3 suitable for X-ray diffraction studies
were obtained by diffusion of diethyl ether into a concen-
trated acetonitrile solution at ambient temperature.Yield: 80 mg
(0.132 mmol, 56%). 1H NMR (300 MHz, d6-DMSO): δ 8.26 (d,
3J(H,H) = 7.7 Hz, 2H,Ar-H), 7.79 (d, 3J(H,H) = 7.7 Hz, 2H,Ar-
Acknowledgements
The authors thank the National University of Singapore for financial support
(Grant no. R 143–000–327–133) and especially Ms Geok Kheng Tan and
Professor Lip Lin Koh for determining the X-ray molecular structures.
2
H), 7.57–7.46 (m, 4H, Ar-H), 7.39 (d, J(H,H) = 12.3 Hz, 1H,
CHH), 6.79 (d, 2J(H,H) = 12.3 Hz, 1H, CHH), 4.04 (s, 6H, CH3).
13C{1H} NMR (75.48 MHz, d6-DMSO): δ 161.7 (s, COO),
159.4 (s, NCN), 133.6, 132.6, 124.6, 124.4 (s, Ar-C), 116.4
References
[1] F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122.
doi:10.1002/ANIE.200703883
[2] E. A. B. Kantchev, C. J. O’Brien, M. G. Organ, Angew. Chem. Int. Ed.
2007, 46, 2768. doi:10.1002/ANIE.200601663
[3] F. E. Hahn, L. Wittenbecher, R. Boese, D. Bläser, Chem. Eur. J. 1999,
5, 1931. doi:10.1002/(SICI)1521-3765(19990604)5:6<1931::AID-
CHEM1931>3.0.CO;2-M
1
(q, J(C,F) = 290.4 Hz, CF3), 111.9, 111.3 (s, Ar-C), 57.1 (s,
CH2), 34.0 (s, CH3). 19F{1H} NMR (282 MHz, d6-DMSO):
2.55 (br s, 6F, CF3). MS (ESI, positive ions) m/z [%]: 495 (96)
[M − O2CCF3]+. Calc. for PdC21H16N4O4F6 (608.79): C,
41.43; H, 2.65; N, 9.20%. Anal. Found: C, 40.94; H, 2.69;
N, 8.99%.
[4] F. E. Hahn, L. Wittenbecher, D. Le Van, D. R. Fröhlich,
Angew. Chem. Int. Ed. 2000, 39, 541. doi:10.1002/(SICI)1521-
3773(20000204)39:3<541::AID-ANIE541>3.0.CO;2-B
[5] F. E. Hahn, T. von Fehren, T. Lügger, Inorg. Chim. Acta 2005, 358,
4137. doi:10.1016/J.ICA.2004.11.053
[6] F. E. Hahn, V. Langenhahn, T. Lügger, T. Pape, D. Le Van, Angew.
Chem. Int. Ed. 2005, 44, 3759. doi:10.1002/ANIE.200462690
[7] F. E. Hahn, V. Langenhahn, N. Meier, T. Lügger, W. P. Fehlhammer,
Chem. Eur. J. 2003, 9, 704. doi:10.1002/CHEM.200390079
[8] F. E. Hahn, C. G. Plumed, M. Münder, T. Lügger, Chem. Eur. J. 2004,
10, 6285. doi:10.1002/CHEM.200400576
[9] Y. Han, H.V. Huynh, L. L. Koh, J. Organomet. Chem. 2007, 692, 3606.
doi:10.1016/J.JORGANCHEM.2007.04.037
[10] H. V. Huynh, T. C. Neo, G. K. Tan, Organometallics 2006, 25, 1298.
doi:10.1021/OM0510369
[11] H. V. Huynh, J. H. H. Ho, T. C. Neo, L. L. Koh, J. Organomet. Chem.
2005, 690, 3854. doi:10.1016/J.JORGANCHEM.2005.04.053
[12] A. Marson, A. B. van Oort, W. P. Mul, Eur. J. Inorg. Chem.
2002, 3028. doi:10.1002/1099-0682(200211)2002:11<3028::AID-
EJIC3028>3.0.CO;2-8
Bis(acetonitrile)-1,1ꢀ-methylene-(3,3ꢀ-
dimethyldibenzimidazolin-2-ylidene)
palladium(II) Ditriflate 4
Complex 4 was synthesized in analogy to 2, from 1 (0.197 g,
0.364 mmol) andAgO3SCF3 (0.211 g, 0.820 mmol) and isolated
as a white solid. Transparent cubic crystals suitable for X-ray
diffraction studies were obtained by diffusion of diethyl ether
into a concentrated acetonitrile solution at ambient tempera-
1
ture. Yield: 0.136 g (0.200 mmol, 55%). H NMR (300 MHz,
3
d6-DMSO): δ 8.25 (d, J(H,H) = 7.7 Hz, 2H, Ar-H), 7.81 (d,
3J(H,H) = 7.9 Hz, 2H, Ar-H), 7.59–7.49 (m, 4H, Ar-H), 7.36
2
2
(d, J(H,H) = 13.1 Hz, 1H, CHH), 6.92 (d, J(H,H) = 13.1 Hz,
1H, CHH), 4.10 (s, 6H, CH3), 1.75 (CH3CN). 13C{1H} NMR
(75.48 MHz, d6-DMSO): δ 159.1 (s, NCN) 133.8, 132.4, 127.1,
124.8, 124.6 (s, Ar-C), 120.7 (q, 1J(C,F) = 322.8 Hz, CF3),
112.1, 111.3 (s, Ar-C), 57.0 (s, CH2), 34.5 (s, CH3). 19F{1H}
NMR (282 MHz, d6-DMSO): −1.80 (br s, 6F, CF3). MS (ESI,
positive ions) m/z [%]: 531 (44) [M − O3SCF3]+.
[13] C. Bianchini, A. Meli, W. Oberhauser, Organometallics 2003, 22,
4281. doi:10.1021/OM030132B
[14] T. Scherg, S. K. Schneider, G. D. Frey, J. Schwarz, E. Herdtweck,
W. A. Herrmann, Synlett 2006, 2894.
General Procedure for Pd-catalyzed Hydroamination
of Styrene Using Aniline
[15] (a) The preparation of complex 1 by a different route with a lower
yield of 58% has recently been reported: A. Biffis, C. Tubaro,
G. Buscemi, M. Basato, Adv. Synth. Catal. 2008, 350, 189.
doi:10.1002/ADSC.200700271
Complex 3 (0.02 mmol) was weighed into a Schlenk tube. The
flask was evacuated and filled with nitrogen. Toluene (0.5 mL),
styrene (0.17 mL, 1.5 mmol), and aniline (0.09 mL, 1 mmol)
were added stepwise. The mixture was heated and stirred at
100◦C for 30 min and CF3CO2H (0.015 mL, 0.20 mmol) was
added. The mixture was left to stir for 24 h at 100◦C. The
reaction mixture was adsorbed onto silica gel and eluted with
hexane/ethyl acetate (1:0.15).
(b) The diiodo analogue of 1 has also been reported: F. E. Hahn,
M. Foth, J. Organomet. Chem. 1999, 585, 241. doi:10.1016/S0022-
328X(99)00219-3
[16] H. V. Huynh, D. LeVan, F. E. Hahn, T. S. A. Hor, J. Organomet. Chem.
2004, 689, 1766. doi:10.1016/J.JORGANCHEM.2004.02.033
[17] H. V. Huynh, R. Jothibasu, Eur. J. Inorg. Chem. 2009, 1926.
doi:10.1002/EJIC.200801149
X-Ray Diffraction Studies
[18] SMART version 5.628 2001 (Bruker AXS Inc.: Madison, Wisconsin,
USA).
X-ray data were collected with a Bruker AXS SMART APEX
diffractometer, using MoKα radiation at 223 K with the SMART
suite of programs.[18] Data were processed and corrected for
Lorentz and polarization effects with SAINT,[19] and for absorp-
tion effect with SADABS.[20] Structural solution and refinement
were carried out with the SHELXTL suite of programs.[21] The
structure was solved by direct methods to locate the heavy
atoms, followed by difference maps for the light, non-hydrogen
[19] SAINT+ version 6.22a 2001 (Bruker AXS Inc.: Madison, Wisconsin,
USA).
[20] G. W. Sheldrick, SADABS version 2.10 2001 (University of Göttin-
gen).
[21] SHELXTL version 6.14 2000 Bruker AXS Inc.: Madison, Wisconsin,
USA.