The Journal of Physical Chemistry A
ARTICLE
the asymmetric unit are now 4, leading to the appearance of a
new Raman active mode in the SÀOH symmetric stretching
region [see Figure 4a,b]. The compound in the Pc phase has four
different crystallographically independent formula units in the
asymmetric unit similar to the case of P1. We have noticed the
appearance of new Raman active peaks in the SÀO asymmetric
’ REFERENCES
(1) Lines, M. E.; Glass, A. M. Principles and Applications of Ferro-
electrics and Related Materials; Oxford University Press: New York, 1977.
(2) Xu, G.-C.; Ma, X.-M.; Zhang, L.; Wang, Z.-M.; Gao, S. J. Am.
Chem. Soc. 2010, 132, 9588.
ꢀ
(3) Szklarz, P.; Cha ꢀn ski, M.; Slepokura, K.; Lis, T. Chem. Mater.
2
011, 23, 1082.
4) Yashima, M.; Matsuyama, S.; Sano, R.; Itoh, M.; Tsuda, K.; Fu, D.
Chem. Mater. 2011, 23, 1643.
5) Chaudhury, R. P.; Ye, F.; Fernandez-Baca, J. A.; Lorenz, B.;
Wang, Y. Q.; Sun, Y. Y.; Mook, H. A.; Chu, C. W. Phys. Rev. B 2011,
3, 014401.
6) Choi, T.; Horibe, Y.; Yi, H. T.; Choi, Y. J.; Wu, W.; Cheong,
stretching region [see Figure 5a,b], NH bending region [see
4
(
Figure 6a], and symmetric and asymmetric NH stretching
4
region [see Figure 7], which indicates that there is an increase
in the number of independent formula units in the asymmetric
unit. Since in the case of P1 the asymmetric unit contains 8
independent formula units, it would have more Raman modes
compared to the Pc phase. Conversely, if we assume the structure
is P1, we do not expect an increase in Raman active modes as the
number of formula units in the asymmetric unit remain the same
for both the Pc and P1 space groups.
The appearance of new Raman bands [Figures 5a,b, 6a, and 7]
below Tc2 is interpreted as deformations within the crystal-
lographically independent molecular units because of symmetry
breaking. The analysis of the Raman spectra also provides
(
8
(
S.-W. Nat. Mater. 2010, 9, 253.
(7) Zhang, T.; Chen, L.-Z.; Gou, M.; Li, Y.-H.; Fu, D.-W.; Xiong,
R.-G. Cryst. Growth Des. 2010, 10, 1025.
(
(
(
8) Szafra ꢀn ski, M.; Katrusiak, A. Phys. Rev. B 2006, 73, 134111.
9) Horiuchi, S.; Tokura, Y. Nat. Mater. 2008, 7, 357.
10) Bouattour, S.; Hassen, R. B.; Kolsi, A. W.; Jaud, J.; Mhiri, T.
Phys. Status Solidi A 1999, 172, 491.
(11) Itoh, K.; Moriyoshi, C. Ferroelectrics 2003, 285, 91.
(12) Kumai, R.; Horiuchi, S.; Sagayama, H.; Arima, T.-H.; Watanabe,
evidence for proton ordering in OÀH O and NÀH
O
3
3 3
3 3 3
M.; Noda, Y.; Tokura, Y. J. Am. Chem. Soc. 2007, 129, 12920.
hydrogen bonds, which can be noticed by analyzing the OÀH
and NÀH vibration of the temperature dependent Raman spectra.
The decrease in frequency with a decrease in temperature suggests
that the hydrogen atoms are moving away from the O and N atoms
toward acceptor atoms. The sharp peaks at lower temperatures
suggest that protons are ordered and are fixed in space. This induced
splitting of modes due to a reduction in symmetry.
(13) Ye, H.-Y.; Fu, D.-W.; Zhang, Y.; Zhang, W.; Xiong, R.-G.;
Huang, S. D. J. Am. Chem. Soc. 2009, 131, 42.
(14) Baranov, A. I.; Shuvalov, L. A.; Shchagina, N. M. JETP Lett.
1982, 36, 459.
(15) Wood, B. C.; Marzari, N. Phys. Rev. B 2007, 76, 134301.
(16) Yoshida, Y.; Matsuo, Y.; Ikehata, S. Ferroelectrics 2004, 302, 85.
(17) Swain, D.; Bhadram, V. S.; Pradhan, G. K.; Bhat, S. V.;
Narayana, C.; Rao, C. N. R. J. Phys. Chem. A 2010, 114, 10040.
(
(
(
18) Swain, D.; Guru Row, T. N. Inorg. Chem. 2008, 47, 8613.
19) Pepinsky, R.; Vedam, K. Phys. Rev. B 1960, 117, 1502.
20) Pepinsky, R.; Vedam, K.; Hoshino, S.; Okaya, Y. Phys. Rev. B
’
CONCLUSIONS
The temperature-dependent Raman and X-ray investigation are
1
958, 111, 1508.
21) Bj €o rkstr €o m, O.; Fredriksson, A.; Mellander, B.-E.; Diosa, J. E.;
Vargas, R. A. Solid State Ionics 1994, 69, 75.
22) Diosa, J. E.; Fern ꢀa dez, M. E.; Vargas, R. A. Phys. Status Solidi B
able to explain the dynamics of the phase transitions in NH HSO .
4
4
(
The appearance of new Raman modes and anomaly in both
vibrational frequencies and fwhm at transition temperatures are
attributed to the structural changes in the crystal during the transi-
(
2
001, 227, 465.
tions. The ferroelectric phase transition in NH HSO at T is mainly
4
4
c1
(23) Nelmes, R. J. Acta Crystallogr., Sect. A: Found. Crystallogr. 1972,
28, 445.
(24) Nelmes, R. J. Ferroelectrics 1972, 4, 133.
(25) Kumar, G. V. P.; Narayana, C. Curr. Sci. 2007, 93, 778.
(26) SMART, SAINT, SADABAS, XPREP, and SHELXTL; Bruker
AXS Inc.: Madison, WI, 1998.
À
driven by ordering in the HSO4 ions. It is clear that the internal
SÀOH and SÀO symmetric stretching modes and their fwhm throw
light on the ordering mechanism during the ferroelectric phase
transition, whereas the large changes in asymmetric stretching and
bending vibrational modes in addition to symmetric SÀO stretching
modes suggest the lowering of symmetry in the nonferroelectric
phase transition. The Raman and X-ray studies are able to capture the
three phases of NH HSO with the lowering of temperature and
(
27) Sheldrick, G. M. SADABS; University of G €o ttingen: G €o ttingen,
Germany, 1996.
28) Sheldrick, G. M. SHELXL97, Program for Crystal Structure
Refinement; University of G €o ttingen: G €o ttingen, Germany, 1997.
(
4
4
suggest a role of hydrogen bonding and proton ordering, contrary to
what had been proposed by earlier experiments.
(
(
(
29) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.
30) Itoh, K.; Ohno, H.; Kuragaki, S. J. Phys. Soc. Jpn. 1995, 64, 479.
31) Nalini, G.; Guru Row, T. N. Phase Transitions 2003, 76, 23.
’
ASSOCIATED CONTENT
(32) Herzberg, G. The Infrared and Raman Spectra of Polyatomic
Molecules; Van Nostrand: New York, 1945.
(33) Moreira, J. A.; Almeida, A.; Chaves, M. R.; Santos, M. L.;
Alferes, P. P.; Gregora, I. Phys. Rev. B 2007, 76, 174102.
S
Supporting Information. P2 /c and Pc hkl plots. This
b
1
material is available free of charge via the Internet at http://pubs.
acs.org.
(
34) Toupry, N.; Poulet, H.; Postollec, M. L. J. Raman Spectrosc.
981, 11, 81.
35) Yuzyuk, Y. I.; Torgashev, V. I.; Gregora, I.; Fuith, A. H. J. Phys.:
Condens. Matter 1999, 11, 889.
1
(
’
AUTHOR INFORMATION
(
(
36) Kwon, S.-B.; Kimt, J.-J. J. Phys.: Condens. Matter 1990, 2, 10607.
37) Jariwala, M.; Crawford, J.; LeCaptain, D.J. Ind. Eng. Chem. Res.
Corresponding Author
*E-mail: cbhas@jncasr.ac.in.
2
007, 46, 4900.
’
ACKNOWLEDGMENT
We would like to acknowledge Professor C.N.R. Rao for useful
discussions during the preparation of this manuscript.
2
30
dx.doi.org/10.1021/jp2075868 |J. Phys. Chem. A 2012, 116, 223–230