K. Yamamoto et al. / Bioorg. Med. Chem. Lett. 15 (2005) 517–522
Table 2. In vivo activity of 10b in animal models
521
Compound
Dose (mg/kg)
Blood glucose (mg/dL)
Triglyceride (mg/dL)
Body weight gain (g)
db/db Mousea
Vehicle
––
945 122
432 74**
653 66**
514 70**
193 81
73 26**
188 66
138 66
5.4 0.6
15.5 3.0**
3.2 1.3
Pioglitazone
10b
10b
100
100
10
3.7 0.9
ZDF ratb
Vehicle
Pioglitazone
10b
––
30
30
3
364 80
819 204
109 67**
765 157
958 309
56.2 16.3
96.6 9.5**
61.9 8.6
60.1 9.9
174 70**
228 49**
262 72*
10b
a Six db/db mice/group at 8 weeks old were orally administered once daily with vehicle or 10b in vehicle. After 4 weeks of dosing, mice were
anesthetized with pentobarbital and blood was collected.
b Six ZDF rats/group at 9 weeks old were orally administered once daily with vehicle or 10b in vehicle. After 2 weeks of dosing, rats were anesthetized
with pentobarbital and blood was collected.
*P < 0.05.
**P < 0.01.
6. Cronet, P.; Petersen, J. F.; Folmer, R.; Blomberg, N.;
Sjoblom, K.; Karlsson, U.; Lindstedt, E. L.; Bamberg, K.
Structure 2001, 9, 699–706.
7. Xu, H. E.; Lambert, M. H.; Montana, V. G.; Plunket, K.
D.; Moore, L. B.; Collins, J. L.; Oplinger, J. A.; Kliewer,
S. A.; Gampe, R. T., Jr.; McKee, D. D.; Moore, J. T.;
Willson, T. M. Proc. Natl. Acad. Sci. U.S.A. 2001, 98,
13919–13924.
8. Hallakou, S.; Doare, L.; Foufelle, F.; Kergoat, M.;
Guerre-Millo, M.; Berthault, M. F.; Dugail, I.; Morin,
J.; Auwerx, J.; Ferre, P. Diabetes 1997, 46, 1393–1399.
9. Mukherjee, R.; Hoener, P. A.; Jow, L.; Bilakovics, J.;
Klausing, K.; Mais, D. E.; Faulkner, A.; Croston, G. E.;
Paterniti, J. R., Jr. Mol. Endocrinol. 2000, 14, 1425–1433.
10. Kliewer, S. A.; Lenhard, J. M.; Willson, T. M.; Patel, I.;
Morris, D. C.; Lehmann, J. M. Cell 1995, 83, 813–819.
11. Horrocks, L. A.; Yeo, Y. K. Pharmacol. Res. 1999, 40,
211–225.
12. Hong, S.; Gronert, K.; Devchand, P. R.; Moussignac, R.
L.; Serhan, C. N. J. Biol. Chem. 2003, 278, 14677–14687.
13. Corey, E. J.; Shih, C.; Cashman, J. R. Proc. Natl. Acad.
Sci. U.S.A. 1983, 80, 3581–3584.
14. Fischer, S.; Schacky, C. v.; Siess, W.; Strasser, T.; Weber,
P. C. Biochem. Biophys. Res. Commun. 1984, 120, 907–
918.
15. Nolte, R. T.; Wisely, G. B.; Westin, S.; Cobb, J. E.;
Lambert, M. H.; Kurokawa, R.; Rosenfeld, M. G.;
Willson, T. M.; Glass, C. K.; Milburn, M. V. Nature
1998, 395, 137–143.
and 4-hydroxyl group must be essential because only
compounds with a hydroxyl, carbonyl or fluorine group
at C(4) activate PPARc. As noted above, the planar
5E,7Z-conjugated diene structure is also important for
high biological potency. This diene moiety fits into a
narrow, hydrophobic tunnel formed by C285 (H3),
L330 (H5), and I326 (H5), and overlaps with the middle
aromatic ring of rosiglitazone, as seen in Figure 2d.
PPARc plays an important role in energy accumulation,
whereas PPARa is involved in energy consumption.
Therefore, dual agonists of PPARc and a are now
thought to be good antidiabetic agents that will not give
rise to undesirable effects such as obesity and edema.21
We identified putative metabolites of DHA that strongly
activate PPARc, of which 4-keto ester 10b showed anti-
diabetic activity in vivo without producing any side
effects. These DHA derivatives may function as dual
agonists, as they possess a carboxyl group but not a
TZD ring.6,7 Thus, we present here novel potential leads
for treating type 2 diabetes. Although they are not as ac-
tive as pure synthetic aromatic agents in vivo at the pres-
ent time, they may be nontoxic agents that would not
cause obesity during long-term treatment. Further stud-
ies are now needed to prove the potential of these com-
pounds and to clarify their behavior in vivo.
16. Spectral data. (5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-
5,7,10,13,16,19-docosahexaenoic acid (2a): 1H NMR: d
0.97 (3H, t, J = 7.5 Hz, H-22), 1.88 (2H, m, H-3), 2.08
(2H, m, H-21), 2.48 (2H, t, J = 7.3 Hz, H-2), 2.80–2.91
(6H, m, H-12, 15, 18), 2.97 (2H, t, J = 6.6 Hz, H-9), 4.25
(1H, dd, J = 12.6, 6.6 Hz, H-4), 5.32–5.43 (9H, m, H-8, 10,
11, 13, 14, 16, 17, 19, 20), 5.68 (1H, dd, J = 15.1, 6.5 Hz,
H-5), 6.01 (1H, t, J = 11.0 Hz, H-7), 6.54 (1H, dd,
J = 15.1, 11.0 Hz, H-6); MS m/z 344 (M+, 1), 327 (3),
326 (7), 297 (4), 246 (14), 187 (16), 117 (50), 108 (55), 79
(100); HRMS Calcd for C22H30O2 (M+ÀH2O) 326.2246.
Found 326.2256. Methyl(5E,7Z,10Z,13Z,16Z,19Z)-4-
References and notes
1. Lehmann, J. M.; Moore, L. B.; Smith-Oliver, T. A.;
Wilkison, W. O.; Willson, T. M.; Kliewer, S. A. J. Biol.
Chem. 1995, 270, 12953–12956.
2. Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B.
R. J. Med. Chem. 2000, 43, 527–550.
3. Barroso, I.; Gurnell, M.; Crowley, V. E.; Agostini, M.;
Schwabe, J. W.; Soos, M. A.; Maslen, G. L.; Williams, T.
D.; Lewis, H.; Schafer, A. J.; Chatterjee, V. K.; OÕRahilly,
S. Nature 1999, 402, 880–883.
1
oxo-5,7,10,13,16,19-docosahexaenoate (10b): H NMR: d
4. Stumvoll, M.; Haring, H. U. Ann. Med. 2002, 34, 217–
224.
5. Zanchi, A.; Chiolero, A.; Maillard, M.; Nussberger, J.;
Brunner, H. R.; Burnier, M. J. Clin. Endocrinol. Metab.
2004, 89, 1140–1145.
0.97 (3H, t, J = 7.5 Hz, H-22), 2.07 (2H, m, H-21), 2.66
(2H, t, J = 6.7 Hz, H-2), 2.77–2.88 (6H, m, H-12, 15, 18),
2.92 (2H, t, J = 6.7 Hz, H-3), 3.01 (2H, t, J = 7.3 Hz, H-9),
3.69 (3H, s, CO2Me), 5.28–5.49 (8H, m, H-10, 11, 13, 14,
16, 17, 19, 20), 5.87 (1H, m, H-6), 6.15 (1H, d, J = 11.4 Hz,