Communication
ChemComm
5 S. Kumar, J. Shukla, Y. Kumar and P. Mukhopadhyay, Org. Chem.
Front., 2018, 5, 2254–2276.
6 C. Li and H. Wonneberger, Adv. Mater., 2012, 24, 613–636.
7 Z. Liu, Y. Wu, Q. Zhang and X. Gao, J. Mater. Chem. A, 2016, 4,
17604–17622.
8 F. Wu¨rthner and M. Stolte, Chem. Commun., 2011, 47, 5109–5115.
9 G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang,
F. Huang and H. Yan, Chem. Rev., 2018, 118, 3447–3507.
10 F. N. Miros and S. Matile, ChemistryOpen, 2016, 5, 219–226.
11 A. Perez-Velasco, V. Gorteau and S. Matile, Angew. Chem., Int. Ed.,
2008, 47, 921–923.
12 C. Wang, F. N. Miros, J. Mareda, N. Sakai and S. Matile, Angew.
Chem., Int. Ed., 2016, 55, 14422–14426.
13 Y. Zhao, C. Beuchat, Y. Domoto, J. Gajewy, A. Wilson, J. Mareda,
N. Sakai and S. Matile, J. Am. Chem. Soc., 2014, 136, 2101–2111.
14 Y. Avlasevich, C. Li and K. Mu¨llen, J. Mater. Chem., 2010, 20,
3814–3826.
15 A. N. Basuray, H. P. J. d. Rouville, K. J. Hartlieb, A. C. Fahrenbach
and J. F. Stoddart, Chem. – Asian J., 2013, 8, 524–532.
16 A. N. Basuray, H. P. J. d. Rouville, K. J. Hartlieb, A. C. Fahrenbach
and J. F. Stoddart, Dyes Pigm., 2013, 98, 160–179.
17 M. Gsanger, D. Bialas, L. Huang, M. Stolte and F. Wu¨rthner, Adv.
Mater., 2016, 28, 3615–3645.
18 A. G. Slater, L. M. Perdigao, P. H. Beton and N. R. Champness,
Acc. Chem. Res., 2014, 47, 3417–3427.
19 M. Sun, K. Mu¨llen and M. Yin, Chem. Soc. Rev., 2016, 45, 1513–1528.
20 C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder and
X. Zhan, Nat. Rev. Mater., 2018, 3, 18003.
21 B. A. Jones, M. J. Ahrens, M. H. Yoon, A. Facchetti, T. J. Marks and
M. R. Wasielewski, Angew. Chem., Int. Ed., 2004, 43, 6363–6366.
22 T. Lei, J. H. Dou, Z. J. Ma, C. H. Yao, C. J. Liu, J. Y. Wang and J. Pei,
J. Am. Chem. Soc., 2012, 134, 20025–20028.
23 Y. Li, L. Tan, Z. Wang, H. Qian, Y. Shi and W. Hu, Org. Lett., 2008, 10,
529–532.
alkylsulfide groups of 2 and similarly highly electro-donating
phenylsulfide groups of 3 significantly move their respective
HOMO energy levels up but not notably affect their LUMO
energy levels, which end up with a much narrowed HOMO/
LUMO energy gap, leading to much red-shifted visible-light
absorption. The pentafluorophenylsulfide groups of 6 have five
F atoms in each, which greatly reduces the electron-donating
ability, thus only leading to a limited narrowing effect on the
HOMO/LUMO energy gap and relatively a slight red-shift in
absorption. Additionally, it occurs that the sulphide substitu-
tion could also quench fluorescence and yield much lowered jf,
resulting from partial n - p* charge transfer character (from
sulfide to the PDI core) of the S1 excitation. Indeed, charge
transfer has been widely reported to retard the fluorescence
rate constant and thus largely quench the fluorescence.39,40
In summary, by using simple sulfur redox chemistry, we
successfully realized the introduction of sulfide and sulfone
substituted groups into the PDI p-surface which provided
access to tune the LUMO levels, covering a range of 0.72 eV.
A LUMO level lower than À4.75 eV was obtained from the
phenylsulfone substituted PDI (8) which is the lowest LUMO of
the reported PDI derivatives so far. These PDIs with different
LUMO levels could be used as n-type semiconductor materials
on the one hand. On the other hand, due to electron deficient
p surfaces, the obtained PDIs are ideal to integrate anion–p
interactions into functional systems. In addition, the penta-
fluorophenylsulfide substituted group was introduced into the
PDI core for the first time. The dual effects of the electron
donating S and the withdrawing F together with the electron
deficient PDI surface construct a unique D–A–D system. In the
end, the influence and the change in trend of the photophysical
properties of the obtained PDI series by the different substi-
tuted groups were also studied. With electron-donating and
withdrawing substituents in the core, the PDI chemistry becomes
colorful. The maximum emission ranged from 540 to 692 nm.
A maximal 132 nm Stokes shift was observed for the alkylsulfide
substituted PDI (2). The pentafluorophenylsulfide substituted
PDI (6) maintained both the fluorescence quantum yields and
the long wavelength fluorescence.
24 R. Schmidt, J. H. Oh, Y.-S. Sun, M. Deppisch, A.-M. Krause,
¨
K. Radacki, H. Braunschweig, M. Konemann, P. Erk, Z. Bao and
F. Wu¨rthner, J. Am. Chem. Soc., 2009, 131, 6215–6228.
25 X. Kan, H. Liu, Q. Pan, Z. Li and Y. Zhao, Chin. Chem. Lett., 2018, 29,
261–266.
26 E. Zhou, K. Tajima, C. Yang and K. Hashimoto, J. Mater. Chem.,
2010, 20, 2362–2368.
27 G. Battagliarin, Y. Zhao, C. Li and K. Mu¨llen, Org. Lett., 2011, 13,
3399–3401.
28 J. Gao, C. Xiao, W. Jiang and Z. Wang, Org. Lett., 2014, 16, 394–397.
29 V. Sharma, U. Puthumana, P. Karak and A. L. Koner, J. Org. Chem.,
2018, 83, 11458–11462.
¨
30 F. Wu¨rthner, P. Osswald, R. Schmidt, T. E. Kaiser, H. Mansikkamaki
¨
and M. Konemann, Org. Lett., 2006, 8, 3765–3768.
31 X. Zhang, X. Hao, L. Liu, A. T. Pham, J. Lopez-Andarias, A. Frontera,
N. Sakai and S. Matile, J. Am. Chem. Soc., 2018, 140, 17867–17871.
´ ´
¨
32 N.-T. Lin, A. Vargas Jentzsch, L. Guenee, J.-M. Neudorfl, S. Aziz,
A. Berkessel, E. Orentas, N. Sakai and S. Matile, Chem. Sci., 2012, 3,
1121–1127.
33 J. Misek, A. Vargas Jentzsch, S. Sakurai, D. Emery, J. Mareda and
S. Matile, Angew. Chem., Int. Ed., 2010, 49, 7680–7683.
34 N. Sakai, J. Mareda, E. Vauthey and S. Matile, Chem. Commun., 2010,
46, 4225–4237.
35 Y. Zhao, G. Huang, C. Besnard, J. Mareda, N. Sakai and S. Matile,
Chem. – Eur. J., 2015, 21, 6202–6207.
Conflicts of interest
There are no conflicts to declare.
36 Y. Mao, M. Head-Gordon and Y. Shao, Chem. Sci., 2018, 9, 8598–8607.
37 J. C. Theriot, C.-H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave and
G. M. Miyake, Science, 2016, 352, 1082–1086.
38 B. G. McCarthy, R. M. Pearson, C.-H. Lim, S. M. Sartor, N. H.
Damrauer and G. M. Miyake, J. Am. Chem. Soc., 2018, 140, 5088–5101.
Notes and references
1 C. Huang, S. Barlow and S. R. Marder, J. Org. Chem., 2011, 76,
2386–2407.
2 W. Jiang, Y. Li and Z. Wang, Acc. Chem. Res., 2014, 47, 3135–3147.
3 B. A. Jones, A. Facchetti, M. R. Wasielewski and T. J. Marks, J. Am. 39 S. M. Sartor, B. G. McCarthy, R. M. Pearson, G. M. Miyake and N. H.
Chem. Soc., 2007, 129, 15259–15278. Damrauer, J. Am. Chem. Soc., 2018, 140, 4778–4781.
4 B. J. Jung, N. J. Tremblay, M.-L. Yeh and H. E. Katz, Chem. Mater., 40 C. Wu, H. Chen, N. Corrigan, K. Jung, X. Kan, Z. Li, W. Liu, J. Xu and
2011, 23, 568–582.
C. Boyer, J. Am. Chem. Soc., 2019, 141, 8207–8220.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13570--13573 | 13573