Full Paper
ing eight fused azole units. Our approach to the molecular de-
sign of unstrained macrocycles will facilitate the synthesis of
water-soluble octa-azole macrocycles with interesting biological
properties.
Keywords: Synthesis design · Density functional calculations ·
Natural products · Macrocycles · Nitrogen heterocycles
[
[
[
1] K. Shin-ya, K. Wierzba, K. Matsuo, T. Ohtani, Y. Yamada, K. Furihata, Y.
Hayakawa, H. Seto, J. Am. Chem. Soc. 2001, 6, 1262.
2] X. H. Jian, H. X. Pan, T. T. Ning, Y. Y. Shi, Y. S. Chen, Y. Li, X. W. Zeng, J.
Xu, G. L. Tang, ACS Chem. Biol. 2012, 7, 646.
3] a) K. Mu-Yong, H. Vankayalapati, K. Shin-Ya, K. Wierzba, L. H. Hurley, J.
Am. Chem. Soc. 2002, 124, 2098; b) T. T. Charvat, D. J. Lee, W. E. Robinson,
A. R. Chamberlin, Bioorg. Med. Chem. 2006, 14, 4552; c) S. Agrawal, R. P.
Ojha, S. Maiti, J. Phys. Chem. B 2008, 112, 6828; d) A. K. Chaubey, K. D.
Dubey, R. P. Ojha, J. Comput.-Aided Mol. Des. 2012, 26, 289; e) M. Toro, P.
Bucek, A. Avino, J. Jaumot, C. Gonzalez, R. Eritja, R. Gargallo, Biochimie
Experimental Section
Materials and Methods
General Synthetic Methods and Reagents: Unless otherwise
noted, all reactions were performed under nitrogen. Distilled sol-
vents were used for all reactions, work-up procedures, TLC, and pre-
parative column chromatography. All additional chemicals were
purchased from Bachem, Fluka, Sigma–Aldrich, Merck, and Novabio-
2009, 91, 894–902.
chem in purum or puriss. grades. For all aq. solutions, H O was
2
[4] a) M. Kim, M. Gleason-Guzman, E. Izbicka, D. Nishioka, L. H. Hurley, Can-
cer Res. 2003, 63, 3247; b) M. Kim, H. Vankayalapati, K. Shin-ya, K.
Wierzba, L. H. Hurley, J. Am. Chem. Soc. 2002, 124, 2098; c) E. M. Rezler,
J. Seenisamy, S. Bashyam, M. Y. Kim, E. White, W. D. Wilson, L. H. Hurley,
J. Am. Chem. Soc. 2005, 127, 9439.
purified on a Purelab Ultra MK2 apparatus from ELGA Labwater.
Melting points were determined by using an Olympus microscope
with a TECON-Controller Series 150. TLC was performed on alumina
plates layered with 0.2 mm silica 60 F254 from Merck and were de-
veloped in a solvent-saturated chamber. Preparative column chro-
matography was performed by using silica 60 (particle size 43–
[
5] a) J. Seenisamy, S. Bashyam, V. Gokhale, H. Vankayalapati, D. Sun, A. Sid-
diqui-Jain, N. Streiner, K. Shin-Ya, E. White, W. D. Wilson, L. H. Hurley, J.
Am. Chem. Soc. 2005, 127, 2944; b) D. Monchaud, M.-P. Teulade-Fichou,
Org. Biomol. Chem. 2008, 6, 627.
6
3 μm) from Merck. Analytical HPLC was performed with a Varian
ProStar instrument with two solvent delivery Modules Model 210
and a Varian ProStar UV/Vis Detector Model 335 on a reversed-
phase MODULO-CART QS UPTISPHERE 300 10ODB column from IN-
TERCHROM (250 × 4.6 mm, N° Serie 329548b). Solvent mixtures of
MeCN and water containing 0.03 % TFA were used as eluent for all
substances. Gradients were varied according to the polarity of the
substances. For semi-preparative HPLC a YMCbasic BA99S11-
[
[
6] K. Shin-ya, Nihon Rinsho 2004, 62, 1277.
7] A. De Cian, G. Cristofari, P. Reichenbach, E. De Lemos, D. Monchaud, M. P.
Teulade-Fichou, K. Shin-Ya, L. Lacroix, J. Lingner, J. L. Mergny, Proc. Natl.
Acad. Sci. USA 2007, 104, 17347.
[8] a) T. Tauchi, K. Shin-Ya, G. Sashida, M. Sumi, A. Nakajima, T. Shimamoto,
J. H. Ohyashiki, K. Ohyashiki, Oncogene 2003, 22, 5338; b) D. Gomez, N.
Aouali, A. Renaud, C. Douarre, K. Shin-Ya, J. Tazi, S. Martinez, C. Trente-
saux, H. Morjani, J. F. Riou, Cancer Res. 2003, 63, 6149.
1
1
510WT B-22-10P instrument from YMC Europe GmbH [S-10Pμm,
50 × 10 mm, No. 101504729 (W)] was used. For preparative HPLC
[
9] M. A. Shammas, R. J. Shmookler Reis, C. Li, H. Koley, L. H. Hurley, K. C.
Anderson, N. C. Munshi, Clin. Cancer Res. 2004, 10, 770.
a Varian ProStar instrument with two solvent delivery Modules
Model 218, a Varian ProStar UV/Vis Detector Model 325, and a re-
versed-phase C18 5 μm OBD column from Waters XBridge
[
[
10] a) T. Doi, M. Yoshida, K. Shin-ya, T. Takahashi, Org. Lett. 2006, 8, 4165; b)
D. Monchaud, A. Granzhan, N. Saettel, A. Guedin, J. L. Mergny, M. P.
Teulade-Fichou, J. Nucleic Acids 2010, 1; c) T. Doi, K. Shibata, M. Yoshida,
M. Takagi, M. Tera, K. Nagasawa, K. Shin-ya, T. Takahashi, Org. Biomol.
Chem. 2011, 9, 387.
11] a) Z. Zhang, G. Yuan, ARKIVOC 2011, 360; b) X. Liu, H. T. Ngo, Z. Ge, S. J.
Butler, K. A. Jolliffe, Chem. Sci. 2013, 4, 1680; c) S. K. Chattopadhyay, S.
Biswas, S. K. Ghosh, Synthesis 2008, 7, 1029; d) J. Linder, T. P. Garner, H. E.
Williams, M. S. Searle, C. J. Moody, J. Am. Chem. Soc. 2011, 133, 1044; e)
K. Iida, M. Tera, T. Hirokawa, K. Shin-Ya, K. Nagasawa, J. Nucleic Acids
(
19 × 50 mm, Part. No. 186002977 154138338112 04) were used.
2
0
Optical rotations ([α] ) were measured with a Perkin–Elmer 241MC
D
Polarimeter. IR spectra were recorded with a Perkin–Elmer-Spectrum
ONE FT-IR spectrometer. NMR spectra were recorded with a Bruker
AV-300 or AV2-400 spectrometer. ESI mass spectra were recorded
with a triple stage quadrupole instrument (Finnigan TSQ 700, San
Jose, CA) equipped with a combined Finnigan atmospheric pressure
2010, 1; f) G. S. Minhas, D. S. Pilch, J. E. Kerrigan, E. J. LaVoie, J. E. Rice,
–
1
ion (API) source. The solutions (ca. 0.1–1 μmol mL ) were continu-
ously introduced through the electrospray interface with a syringe
infusion pump (Harvard Instruments, Southnatick, MA) at a flow rate
Bioorg. Med. Chem. Lett. 2006, 16, 3891; g) S. G. Rzuczek, D. S. Pilch, E. J.
LaVoie, J. E. Rice, Bioorg. Med. Chem. Lett. 2008, 18, 913; h) M. Tera, K.
Iida, H. Ishizuka, M. Takagi, M. Suganuma, T. Doi, K. Shin-ya, K. Nagasawa,
ChemBioChem 2009, 10, 431; i) M. Tera, K. Iida, K. Shin-ya, K. Nagasawa,
Nucleic Acids Symp. Ser. 2009, 231; j) K. Shibata, M. Yoshida, T. Takahashi,
M. Takagi, K. Shin-ya, T. Doi, Bull. Chem. Soc. Jpn. 2013, 86, 1453; k) M.
Satyanarayana, S. G. Rzuczek, E. J. Lavoie, D. S. Pilch, A. Liu, L. F. Liu, J. E.
Rice, Bioorg. Med. Chem. Lett. 2008, 18, 3802; l) D. Hernándeza, E. Riegoa,
A. Franceschb, C. Cuevasb, F. Albericioa, M. Álvareza, Tetrahedron 2007,
–1
of 3 μL min . The spray voltage was held at 4.5 kV, the source
analyzer transfer capillary was kept at 200 °C, and the sheath gas
used was N with an inlet pressure of 30 psi. The resolution was
2
adjusted at a peak width of 0.7 to 0.8 u at half peak height for both
scanning quadrupoles. Representative mass spectra were obtained
with an average of 20 scans. EI mass spectra were recorded with a
sector field mass analyzer (Finnigan MAT95, San Jose, CA). The ioni-
6
3, 9862; m) S. K. Chattopadhyay, S. Biswas, Tetrahedron Lett. 2006, 47,
7
897.
zation energy was 70 eV for EI and 150 eV for CI with NH as reac-
tant gas.
[12] W. J. Chung, B. Heddi, M. Tera, K. Iida, K. Nagasawa, A. T. Phan, J. Am.
Chem. Soc. 2013, 135, 13495.
3
[
13] a) J. Deeley, A. Bertram, G. Pattenden, Org. Biomol. Chem. 2008, 6, 1994;
b) D. S. Pilch, C. M. Barbieri, S. G. Rzuczek, E. J. Lavoie, J. E. Rice, Biochimie
Supporting Information (see footnote on the first page of this
article): Further details of the synthesis and characterization of
2008, 90, 1233; c) A. Bertram, N. Maulucci, O. M. New, S. M. Mohd Nor,
cyclo(-ox-thia) (1).
4
G. Pattenden, Org. Biomol. Chem. 2007, 5, 1541; d) M. Satyanarayana,
S. G. Rzuczek, E. J. Lavoie, D. S. Pilch, A. Liu, L. F. Liu, J. E. Rice, Bio-
org. Med. Chem. Lett. 2008, 18, 3802.
Acknowledgments
[
[
14] a) C. M. Marson, M. Saadi, Org. Biomol. Chem. 2006, 4, 3892; b) E. J.
Lavoie, J. E. Rice, L. F. Liu, US Pat. 8093235 B2, 2012, accession number:
BCI: BCI201200113908, ISSN: 0098-1133.
15] The reported conformations of the linearized molecules represent local,
not global, energetic minima.
The authors thank the Swiss National Science Foundation (grant
number 146754) and the University of Zurich for financial sup-
port.
Eur. J. Org. Chem. 2016, 367–372
www.eurjoc.org
371
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim