www.eurjic.org
FULL PAPER
2
168.1 (Ar-o) ppm. C12H17LiO (200.21): C 71.99, H 8.56; found C
70.83, H 8.02.
[1] V. Grignard, Ann. Chim. 1901, 24, 433.
[
[
2] T. P. Hanusa, Coord. Chem. Rev. 2000, 210, 329.
3] For reviews, see: a) M. Westerhausen, Angew. Chem. Int. Ed.
001, 40, 2975; Angew. Chem. 2001, 113, 3063; b) J. S. Alexan-
Synthesis of 2,6-(iPrO)
2
C
6
H
3
Na: 1,3-(iPrO)
2
C
6
H
4
(2.60 g,
13.4 mmol) dissolved in hexane (10 mL) was added to a suspension
2
of nBuNa (0.97 g, 12.1 mmol) in hexane (10 mL). After complete
addition, the precipitate dissolved instantaneously to give a yellow
solution. The solution was stirred for 2 h at room temperature and
subsequently all solvents were removed under vacuum. The re-
sulting solid was washed with cold hexane (2ϫ 5 mL). Drying
under high vacuum (0.01 Torr, 20 °C, 30 min) yielded the product
as a white powder (1.60 g, 7.40 mmol, 61%). The product can also
der, K. Ruhlandt-Senge, Eur. J. Inorg. Chem. 2002, 2761; c) M.
Westerhausen, M. Gärtner, R. Fischer, J. Langer, L. Yu, M.
Reiher, Chem. Eur. J. 2007, 13, 6292; d) M. Westerhausen, M.
Gärtner, R. Fischer, J. Langer, Angew. Chem. Int. Ed. 2007, 46,
1
950; Angew. Chem. 2007, 119, 1994; e) M. Westerhausen, Co-
ord. Chem. Rev. 2008, 252, 1516; f) M. Westerhausen, Z. Anorg.
Allg. Chem. 2009, 635, 13; g) A. Torvisco, K. Ruhlandt-Senge,
Top. Organomet. Chem. 2013, 45, 1; h) M. Westerhausen, J.
Langer, S. Krieck, R. Fischer, H. Görls, M. Köhler, Top. Or-
ganomet. Chem. 2013, 45, 29.
be obtained in a similar yield by slow evaporation of the solvent
1
from a hexane solution. H NMR (C
6
D
6
, 300 MHz): δ = 0.97 (d,
J = 6.2 Hz, 12 H), 4.33 (sept, J = 6.2 Hz, 2 H), 6.48 (d, J = 7.5 Hz,
H), 7.22 (t, J = 7.5 Hz, 1 H) ppm. 1 C (C
3
[4] For the polymerization of styrene, see: a) F. Feil, S. Harder,
Organometallics 2000, 19, 5010; b) S. Harder, F. Feil, A.
Weeber, Organometallics 2001, 20, 1044; c) S. Harder, F. Feil,
K. Knoll, Angew. Chem. Int. Ed. 2001, 40, 4261; Angew. Chem.
2
6 6
D , 75 MHz): δ = 22.4
(iPr-Me), 67.8 (iPr-CH), 104.0 (Ar-m), 127.2 (Ar-p), 154.6 (C-Na),
1
6
67.3 (Ar-o) ppm. C12
6.29, H 7.98.
H17NaO
2
(216.26): C 66.65, H 7.92; found C
K: 1,3-(iPrO) (6.50 g,
2001, 113, 4391; d) F. Feil, S. Harder, Macromolecules 2003,
Synthesis of 2,6-(iPrO)
3.5 mmol) and KOC(Me)
2
C
6
H
3
2
C
6
H
4
36, 3446; e) S. Harder, F. Feil, Organometallics 2002, 21, 2268;
f) F. Feil, C. Müller, S. Harder, J. Organomet. Chem. 2003, 683,
3
2
Et (3.55 g, 28.1 mmol) were dissolved
5
6; g) F. Feil, S. Harder, Eur. J. Inorg. Chem. 2003, 3401; h)
D. F.-J. Piesik, K. Häbe, S. Harder, Eur. J. Inorg. Chem. 2007,
652.
in hexane (40 mL) and the mixture was cooled to –50 °C. Then
nBuLi (11.4 mL, 2.46 m in hexane, 28.1 mmol) was added slowly
and a white precipitate formed immediately. While still in the cool-
ing bath, the reaction mixture was slowly warmed to 5 °C and
stirred for a further 2 h at this temperature. Subsequently, the reac-
tion mixture was centrifuged and the precipitate washed with hex-
ane (3ϫ 30 mL). Drying under high vacuum (0.01 Torr, 20 °C,
5
[
5] For the polymerization of polar cyclic ethers, see: a) M. H. Chi-
sholm, D. Navarro-Llobet, W. J. Simonsick Jr., Macromolecules
2
001, 34, 8851; b) S. Schneiderbauer, P. J. Dijkstra, C. Birg, M.
Westerhausen, J. Feijen, Macromolecules 2001, 34, 3863; c) Z.
Zhong, M. J. K. Ankoné, P. J. Dijkstra, C. Birg, M. Westerhau-
sen, J. Feijen, Polym. Bull. 2001, 46, 51; d) M. Westerhausen,
S. Schneiderbauer, A. N. Kneifel, Y. Söltl, P. Mayer, H. Nöth,
Z. Zhong, P. J. Dijkstra, J. Feijen, Eur. J. Inorg. Chem. 2003,
3432; e) M. H. Chisholm, J. Gallucci, K. Phomphrai, Inorg.
Chem. 2004, 43, 6717; f) M. H. Chisholm, J. C. Gallucci, G.
Yaman, Inorg. Chem. 2007, 46, 8676; g) D. J. Darensbourg, W.
Choi, C. P. Richers, Macromolecules 2007, 40, 3521; h) D. J.
Darensbourg, W. Choi, O. Karroonnirun, N. Bhuvanesh, Mac-
romolecules 2008, 41, 3493; i) N. Barros, P. Mountford, S. G.
Guillaume, L. Maron, Chem. Eur. J. 2008, 14, 5507; j) M. H.
Chisholm, J. C. Gallucci, G. Yaman, T. Young, Chem. Com-
mun. 2009, 1828; k) Y. Sarazin, V. Poirier, T. Roisnel, J.-F.
Carpentier, Eur. J. Inorg. Chem. 2010, 3423; l) M. G. Cushion,
P. Mountford, Chem. Commun. 2011, 47, 2276; m) Y. Sarazin,
B. Liu, T. Roisnel, L. Maron, J.-F. Carpentier, J. Am. Chem.
Soc. 2011, 133, 9069.
3
9
0 min) yielded the product as a white powder (6.00 g, 25.8 mmol,
2%). H NMR ([D ]thf, 300 MHz): δ = 1.22 (d, J = 6.2 Hz, 12
8
1
H), 4.72 (sept, J = 6.2 Hz, 2 H), 6.15 (d, J = 7.5 Hz, 2 H), 6.67 (t,
J = 7.5 Hz, 1 H) ppm. 1 C ([D
4.7 (iPr-CH), 102.3 (Ar-m), 122.5 (Ar-p), 161.8 (C-K), 166.1
Ar-o) ppm. Elemental analysis was troublesome due to the high
sensitivity of 2,6-(iPrO) K towards traces of air.
Synthesis of [{2,6-(iPrO)
2
3
8
]thf, 75 MHz): δ = 20.7 (iPr-Me),
6
(
2 6 3
C H
–
+
2
C
6
H
3
}
3
Ca] K : A suspension of CaI
3.05 g, 10.4 mmol) in thf (10 mL) was added to a solution of 2,6-
iPrO) K (5.30 g, 22.8 mmol) in thf (30 mL). After stirring for
8 h at room temperature, the solvent was removed in vacuo. The
(
(
4
2 6 3
C H
residue was extracted with benzene (3ϫ 15 mL) and the combined
benzene layers were concentrated and dried in vacuo. The residue
was washed with hexane (2ϫ 15 mL) and crystallized from benzene
by slow diffusion of hexane to give the product as large colourless
crystalline blocks (600 mg, 0.91 mmol, 12% relative to the potas-
sium precursor). Variation of the K/Ca ratio did not lead to isola-
[
6] a) S. Harder, Chem. Rev. 2010, 110, 3852; b) A. G. M. Barrett,
M. R. Crimmin, M. S. Hill, P. A. Procopiou, Proc. R. Soc. Lon-
don, Ser. A 2010, 466, 927; c) M. R. Crimmin, M. S. Hill, Top.
Organomet. Chem. 2013, 45, 191.
tion of [2,6-(iPrO)
complex. 1H NMR (C
.2 Hz, 36 H), 4.60 (sept, J = 6.2 Hz, 6 H), 6.43 (d, J = 7.8 Hz, 6
2
C
6
H
3
]
2
Ca or to increased yields of the calcate
6
D
6
/[D ]thf, 400 MHz): δ = 1.12 (d, J = [7] a) H. M. El-Kaderi, M. J. Heeg, C. H. Winter, Organometallics
8
6
2004, 23, 4995; b) H. M. El-Kaderi, M. J. Heeg, C. H. Winter,
Polyhedron 2006, 25, 224; c) S. Nath, R. Tu, T. Goto, Surf.
Coat. Technol. 2010, 205, 2618; d) W. D. Buchanan, M. A. Gu-
ino-o, K. Ruhlandt-Senge, Inorg. Chem. 2010, 49, 7144; e)
W. D. Buchanan, M. A. Guino-o, K. Ruhlandt-Senge, Chem.
Eur. J. 2013, 19, 10708.
13
H), 6.96 (t, J = 7.8 Hz, 3 H) ppm. C NMR (C
00 MHz): δ = 22.3 (iPr-Me), 68.9 (iPr-CH), 107.2 (Ar-m), 126.3
Ar-p), 156.3 (C-Ca), 166.6 (Ar-o) ppm. C36 51CaKO (658.98): C
6 6 8
D /[D ]thf,
1
(
H
6
6
5.62, H 7.80; found C 65.47, H 7.99.
Na]
2 6 3 3
) and -1426807 (for {[(iPrO) C H ] Ca }K )
CCDC-1426805 (for [(iPrO)
O]CaI·THF}
2
C
6
H
3
4 2
), -1426806 (for {[(iPrO) -
[
8] a) T. P. Hanusa, Polyhedron 1990, 9, 1345; b) T. P. Hanusa,
Chem. Rev. 1993, 93, 1023; c) D. J. Burkey, T. P. Hanusa, Com-
ments Inorg. Chem. 1995, 17, 41; d) M. L. Hays, T. P. Hanusa,
Adv. Organomet. Chem. 1996, 40, 117; e) P. Jutzi, N. Burford,
Chem. Rev. 1999, 99, 969.
9] a) F. G. N. Cloke, P. B. Hitchcock, M. F. Lappert, G. A. Law-
less, B. Royo, J. Chem. Soc., Chem. Commun. 1991, 724; b)
C. Eaborn, S. A. Hawkes, P. B. Hitchcock, J. D. Smith, Chem.
Commun. 1997, 1961.
–
+
C
6
H
3
2
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.
[
Acknowledgments
[
10] M. G. Harvey, T. P. Hanusa, V. G. Young Jr., Angew. Chem. Int.
D. Bläser and Prof. Dr. R. Boese are kindly acknowledged for part
of the X-ray data collection.
Ed. 1999, 38, 217; Angew. Chem. 1999, 111, 241.
[11] S. Harder, S. Müller, E. Hübner, Organometallics 2004, 23, 178.
Eur. J. Inorg. Chem. 2015, 5743–5750
5749
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim