724
S. Chandra et al. / Spectrochimica Acta Part A 71 (2008) 720–724
lying d-levels to the empty dx2−y2 orbital. Although other two
electronic transitions are also observed but their intensities are
very weak and are neglected. The complexes show the absorp-
tions bands at 18,622–20,747, 27,397–27,933 and 30,674 cm−1
References
[1] L.F. Linday, The Chemistry of Macrocyclic Ligand Complexes, Cambridge
University Press, UK, 1989.
[2] P. Dietrich, P. Viout, J.M. Lehn, Macrocyclic Chemistry, VCH Publishers
[3] R.M. Izatt, K. Powlak, J.S. Bradshaw, Chem. Rev. 91 (1991) 1721.
[4] F. Lions, Rev. Pure Appl. Chem. 19 (1969) 177.
[5] R.D. Jones, D.A. Summervile, F. Basolo, Chem. Rev. 79 (1979) 139.
[6] R.R. Gange, C.I. Spiro, T.J. Smith, W.R. Hamann, W.R. Thies, K. Shiemke,
J. Am. Chem. Soc. 103 (1981) 4073.
[7] (a) G. Cross, J.P. Costs, Acad. C. R. S. C. Paris 294 (1982) 173;
(b) M.F. Huzenkamp, A.C. Stucke, E. Cavolli, H.U. Godel, J. Chem. Soc.
Dalton Trans. (2002) 251;
1
1
1
corresponding to 1A2g ← A1g, 1B1g ← A1g and 1Eg ← A1g
d–d transition [28], respectively. Moreover in the complexes,
the high intensity charge transfer absorption bands are also
observed at 34,247 and 36,764–37,174 cm−1 corresponding to
1A2u ← A1g and1Eu ← A1g transitions, respectively(Fig. 5a).
These absorption bands suggest that the complexes possess D4h
symmetry and square planar geometry.
1
1
(c) S.C. Rawle, A.J. Clarke, P. Moore, N.W. Alcock, J. Chem. Soc. Dalton
Trans. (1992) 2755.
[8] G.A. Melson, Coordination Chemistry of Macrocyclic Compounds,
Plenum Press, New York, 1979.
[9] M. Maji, M. Chatterjee, S. Ghosh, S.K. Chattopadhyay, B.M. Wu, T.C.W.
Mak, J. Chem. Soc. Dalton Trans. (1999) 135.
[10] P. Sengupta, R. Dinda, S. Ghosh, W.S. Sheldrick, Polyhedron 22 (2003)
447.
4.4.2. Platinum(II) complexes
The complexes of Pt(II) are diamagnetic with low-spin d8
system having square planar geometry. The spin allowed d–d
transitions are observed at 18,621–21,413 cm−1, 27,397 cm−1
and 29,155–29,412 cm−1 corresponding to A2g ← A1g,
1
1
1
1
1B1g ← A1g and Eg ← A1g transitions, respectively, in the
complexes. The complexes show the high-energy absorption
bands at 34,364 and 36,364–37,037 cm−1 corresponding to
[11] S. Chandra, R. Gupta, N. Gupta, S.S. Bawa, Trans. Met. Chem. 31 (2006)
147.
charge transfer 1A2u ← A1g and 1Eu ← A1g transitions, respec-
1
[12] S. Chandra, L.K. Gupta, K. Gupta, J. Indian Chem. Soc. 81 (2004) 833.
[13] S. Chandra, L.K. Gupta, Spectrochim. Acta A 61 (2005).
[14] S. Chandra, Sangeetika, Spectrochim. Acta A 60 (2004) 147.
[15] N.M. Milovic, L.M. Dutca, N.M. Kostic, Inorg. Chem. 42 (2003) 4036.
[16] B. Rosenberg, L. Vancamp, J.E. Trosko, V.H. Mansour, Nature (London)
222 (1969) 385.
tively (Fig. 5b). These transitions reveal that the complexes
possess D4h symmetry.
5. Conclusion
[17] B. Rosenberg, Biochemie 60 (1979) 859.
[18] A.J. Charlson, N.T. Mc Ardle, E.C. Walton, Inorg. Chim. Acta 56 (1981)
35.
[19] A.J. Charlson, R.J. Benner, R.P. Gale, N.T. Mc Ardle, K.E. Trainor, E.C.
Walton, J. Clin. Hematol. Oncol. 7 (1977) 294.
[20] K.E. Trainor, E.C. Walton, Cancer Treat. Rep. 61 (1977) 469.
[21] M. Das, S.E. Livingstone, Br. J. Cancer 37 (1978) 466.
[22] M. Akbar Ali, A.H. Mirza, R.J. Butcher, K.A. Crouse, Trans. Met. Chem.
31 (2006) 7987.
[23] W.G. Geary, Coord. Chem. Rev. 7 (1971) 81.
[24] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds,
Wiley Interscience, New York, 1970.
Our proposed structures of macrocyclic ligands on the basis
of the IR, H NMR, EI mass spectra have potential binding
1
sites towards the metal ions and act as tetradentate ligands
by coordinating through four azomethine nitrogens, i.e. in the
N,N,N,N-fashion. The ligands form square planar complexes
with Pd(II) and Pt(II) metal ions. The elemental analysis and
electronic and IR spectral analysis reveal the existence of
monomeric complexes.
[25] O.P. Pandey, Polyhedron 6 (1987) 1021.
Acknowledgements
[26] John R. Dyer, Application of Absorptions Spectroscopy of Organic Com-
pounds, sixth ed., Georgia Institute of Technology, 1987.
[27] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis,
fifth ed., Thomson, 2003.
[28] A.B.P. Lever, Inorganic Electronic Spectroscopy, first ed., Elsevier, Ams-
terdam, 1968.
The authors thank the instrumentation facilities of Depart-
ment of Chemistry, University of Delhi, Delhi, for recording the
IR, H NMR, EI mass spectra and elemental analysis. We are
1
also thankful to the DRDO, Delhi, for financial assistance.