3
2
,33
34
there is an irreversible loss of HDX information for two amides
for each proteolytic cleavage.
coverage and capture efficiency in ECD
experiments.
or ETD
1
8
In the top-down approach, the exchange and quench steps are
the same, but rather than proteolysis and LC-MS or LC-MS/MS,
the intact protein is fragmented in the gas phase. A significant
advantage of the top-down approach is the potential for single
amino acid spatial resolution compared to the traditional bottom-
up approach where the spatial resolution is limited by the length
and overlap of the peptides from proteolysis. Slow heating
methods that are commonly used to fragment gas-phase peptides
and proteins, such as collisional activation, may cause scrambling,
where intramolecular proton or hydrogen atom transfer can lead
to loss of information about where exchange originally occurred
Increased analyte charging in ESI can also be obtained by
adding small amounts of some “supercharging” reagents to the
3
5-37
initial solution from which these ions are formed.
example, ESI of a water/methanol/acetic acid solution containing
% m-nitrobenzyl alcohol (m-NBA) and cytochrome c resulted in
For
1
an increase in the average charge state from 17.3+ to 20.8+ and
the maximum observed charge state from 21+ to 24+ compared
36
to the same solution without m-NBA. Originally used with
“
denaturing” solutions consisting of water, methanol, and acetic
35-37
acid,
m-NBA and other supercharging reagents were shown
by Loo and co-workers to increase the charge states of proteins
19-21
in solution.
In contrast, recent work by a number of research-
38,39
and protein complexes formed from aqueous solutions.
ers has shown that scrambling is largely reduced when intact
proteins or large peptides are fragmented with either electron
4
0
Although many factors, including proton transfer reactivity,
41
37
instrumental conditions, surface tension, etc., can affect charg-
ing in ESI, the charge enhancement observed for proteins and
protein complexes in aqueous solutions containing a supercharg-
ing reagent appears to be predominantly a result of chemical and/
or thermal denaturation that occurs in the electrospray droplet
1
8,22-24
capture dissociation
(ECD) or electron transfer dissociation
2
5-27
(ETD).
The minimal scrambling that occurs with either ECD
or ETD may be due to either nonergodic dissociation, where
cleavage occurs before the recombination energy has time to
2
8,29
dissipate in the molecule,
dissociate before scrambling occurs because of low activation
barriers for dissociation.
or the reduced precursors may
4
2,43
prior to ion formation.
Sulfolane, a supercharging reagent
3
8
3
0,31
found to be effective by Loo et al., destabilizes the native form
of myoglobin by 1.5 kcal/mol/M but has little effect on the native
structure in the initial solution, owing to the typically low
In either case, there is a growing
consensus that HDX coupled to ECD or ETD mass spectrometry
can be a viable approach to obtain accurate amide exchange rate
43
1
8,22-27
concentrations used. Because of the high boiling points of these
information
tion possible.
with close to single amino acid spatial resolu-
supercharging reagents compared to water (bp of m-NBA and
4
4
44
sulfolane are 177 °C at 3 Torr and 287 °C at 760 Torr,
With both the bottom-up and top-down approach, the quench
step affects the results of the experiment in multiple ways. As
described above, the primary effect is to reduce the pH to near
the intrinsic exchange rate minimum, although this rate is still
respectively), the concentration of these supercharging reagents
in the ESI droplets increases as water preferentially evaporates
from the droplet and can cause significant unfolding of the proteins
-3
-1
42,43
fast enough at ∼6 × 10 min at 0 °C (attenuated by the
in the droplet due to chemical and/or thermal denaturation.
1
adjacent side chains and local environment) to cause some
It is well known that the structure of the protein in solution can
significantly affect the charging observed in ESI, where more
back-exchange during any delay between the quench step and
transfer to the gas phase. Decreasing the pH can have the
additional advantage of unfolding the protein and increasing
the charge states of ions formed by electrospray ionization
4
5-47
unfolded structures become more highly charged.
(32) Breuker, K.; Oh, H. B.; Horn, D. M.; Cerda, B. A.; McLafferty, F. W. J. Am.
Chem. Soc. 2002, 124, 6407–6420
33) Iavarone, A. T.; Paech, K.; Williams, E. R. Anal. Chem. 2004, 76, 2231–
238
(34) Syka, J. E. P.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F.
Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533
(35) Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. Anal. Chem. 2001, 73, 1455–
1460
.
(
ESI), which can dramatically improve both the sequence
(
2
.
(
(
(
18) Pan, J. X.; Han, J.; Borchers, C. H.; Konermann, L. J. Am. Chem. Soc. 2009,
31, 12801–12808
19) Hoerner, J. K.; Xiao, H.; Dobo, A.; Kaltashov, I. A. J. Am. Chem. Soc. 2004,
26, 7709–7717
20) Jørgensen, T. J. D.; Bache, N.; Roepstorff, P.; Gardsvoll, H.; Ploug, M. Mol.
Cell. Proteomics 2005, 4, 1910–1919
21) Ferguson, P. L.; Konermann, L. Anal. Chem. 2008, 80, 4078–4086
22) Charlebois, J. P.; Patrie, S. M.; Kelleher, N. L. Anal. Chem. 2003, 75, 3263–
266
23) Rand, K. D.; Adams, C. M.; Zubarev, R. A.; Jørgensen, T. J. D. J. Am. Chem.
Soc. 2008, 130, 1341–1349
24) Pan, J.; Han, J.; Borchers, C. H.; Konermann, L. J. Am. Chem. Soc. 2008,
30, 11574–11575
25) Zehl, M.; Rand, K. D.; Jensen, O. N.; Jørgensen, T. J. D. J. Am. Chem. Soc.
008, 130, 17453–17459
26) Rand, K. D.; Zehl, M.; Jensen, O. N.; Jørgensen, T. J. D. Anal. Chem. 2009,
1, 5577–5584
27) Abzalimov, R. R.; Kaplan, D. A.; Easterling, M. L.; Kaltashov, I. A. J. Am.
Soc. Mass Spectrom. 2009, 20, 1514–1517
28) Breuker, K.; Oh, H. B.; Lin, C.; Carpenter, B. K.; McLafferty, F. W. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 14011–14016
29) Zubarev, R. A.; Kelleher, N. L.; McLafferty, F. W. J. Am. Chem. Soc. 1998,
20, 3265–3266
30) Syrstad, E. A.; Turecek, F. J. Am. Soc. Mass Spectrom. 2005, 16, 208–224
31) Prell, J. S.; O’Brien, J. T.; Holm, A. I. S.; Leib, R. D.; Donald, W. A.; Williams,
E. R. J. Am. Chem. Soc. 2008, 130, 12680–12689
1
.
.
1
.
.
(36) Iavarone, A. T.; Williams, E. R. Int. J. Mass Spectrom. 2002, 219, 63–72
.
.
(37) Iavarone, A. T.; Williams, E. R. J. Am. Chem. Soc. 2003, 125, 2319–2327
(38) Lomeli, S. H.; Yin, S.; Ogorzalek Loo, R. R.; Loo, J. A. J. Am. Soc. Mass
.
(
(
.
Spectrom. 2009, 20, 593–596
(39) Lomeli, S. H.; Peng, I. X.; Yin, S.; Loo, R. R. O.; Loo, J. A. J. Am. Soc. Mass
Spectrom. 2010, 21, 127–131
(40) Iavarone, A. T.; Jurchen, J. C.; Williams, E. R. J. Am. Soc. Mass Spectrom.
2000, 11, 976–985
(41) Page, J. S.; Kelly, R. T.; Tang, K.; Smith, R. D. J. Am. Soc. Mass Spectrom.
2007, 18, 1582–1590
(42) Sterling, H. J.; Williams, E. R. J. Am. Soc. Mass Spectrom. 2009, 20, 1933–
1943
.
3
.
(
(
(
(
(
(
(
.
.
.
1
.
.
2
.
.
8
.
(43) Sterling, H. J.; Daly, M. P.; Feld, G. K.; Thoren, K. L.; Kintzer, A. F.; Krantz,
B. A.; Williams, E. R. J. Am. Soc. Mass Spectrom. 2010, 21, 1762-1774.
(44) Lide, D. R., Ed. CRC Handbook of Chemistry and Physics, 89th ed.; CRC
Press: Boca Raton, FL, 2008-2009.
.
.
(45) Chowdhury, S. K.; Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1990, 112,
9012–9013
(46) Loo, J. A.; Loo, R. R. O.; Udseth, H. R.; Edmonds, C. G.; Smith, R. D. Rapid
Commun. Mass Spectrom. 1991, 5, 101–105
(47) Konermann, L.; Douglas, D. J. Rapid Commun. Mass Spectrom. 1998, 12,
435–442
.
1
.
(
(
.
.
.
.
Analytical Chemistry, Vol. 82, No. 21, November 1, 2010 9051