9820 Macromolecules, Vol. 43, No. 23, 2010
Li et al.
higher selectivity than the S2-PAES-xx membranes due to the
higher proton conductivity and lower methanol permeability.
(10) Gil, M.; Ji, X.; Li, X.; Na, H.; Hampsey, J. E.; Lu, Y. J. Membr. Sci.
2004, 234, 75–81.
(11) Shang, X.; Tian, S.; Kong, L.; Meng, Y. J. Membr. Sci. 2005, 266,
94–101.
(12) Schuster, M.; Kreuer, K.-D.; Andersen, H. T.; Maier, J. Macro-
Conclusions
Novel difluorodiphenyl sulfone monomers containing two or
four pendent phenyl groups have been successfully synthesized in
high yields by sequential bromination and Suzuki coupling. The
non-sulfonated monomer could either be polymerized and the
resulting polymer sulfonated or the monomer couldbesulfonated
and then polymerized. 1H NMR spectroscopy confirmed that the
pendent phenyl groups in either the monomers or the polymers
could be completely sulfonated predominately at the para-phenyl
site in a short time. The polymer electrolyte membranes showed
excellent thermal stability and mechanical properties. The nature
of the hydrophilic segments in the polymer electrolyte mem-
branes significantly affected the proton transport and other
properties. The S4-PAES-xx membranes, comprising a more
blockyhigher local concentration of sulfonic acid groups, showed
lower water uptake and low methanol permeability but higher
proton conductivities than their S2-PAES-xx counterparts hav-
ing the same sulfonic acid content. This infers that a local and
high density of sulfonic acid groups in the pendent phenyl is
important for optimum percolation. For example, S2-PAES-60
and S4-PAES-30 with similar IECw values exhibited proton
conductivity of 190 and 210 mS/cm, respectively, at 100 ꢀC,
higher than that of Nafion 117. The highest conductivity, i.e., 360
mS/cm, was obtained for S4-PAES-40 at 100 ꢀC. The methanol
permeability values of S2-PAES-60 and S4-PAES-30 were 2.8 ꢀ
10-7 and 2.2 ꢀ 10-7 cm2/s, respectively, which is several times
lower than Nafion. The combination of high thermal stability,
good relative proton conductivity, and low methanol transport
makes S2-PAES-60 and S4-PAES-30 attractive as PEM materials
for fuel cells applications.
molecules 2007, 40, 598–607.
(13) Bai, Z.; Dang, T. D. Macromol. Rapid Commun. 2006, 27, 1271–
1277.
(14) Sumner, M. J.; Harrison, W. L.; Weyers, R. M.; Kim, Y. S.;
McGrath, J. E.; Riffle, J. S.; Brink, A.; Brink, M. H. J. Membr.
Sci. 2004, 239, 199–211.
(15) Gao, Y.; Robertson, G. P.; Kim, D.-S.; Guiver, M. D.; Mikhailenko,
S. D.; Li, X.; Kaliaguine, S. Macromolecules 2007, 40, 1512–
1520.
(16) Kim, Y. S.; Kim, D. S.; Liu, B.; Guiver, M. D.; Pivovar, B. S.
J. Electrochem. Soc. 2008, 155, B21–B26.
(17) Genies, C.; Mercier, R.; Sillion, B.; Cornet, N.; Gebel, G.; Pineri,
M. Polymer 2001, 42, 359–373.
(18) Miyatake, K.; Zhou, H.; Matsuo, T.; Uchida, H.; Watanabe, M.
Macromolecules 2004, 37, 4961–4966.
(19) Yin, Y.; Suto, Y.; Sakabe, T.; Chen, S.; Hayashi, S.; Mishima, T.;
Yamada, O.; Tanaka, K.; Kita, H.; Okamoto, K.-I. Macromole-
cules 2006, 39, 1189–1198.
(20) Li, N.; Cui, Z.; Zhang, S.; Li, S. J. Polym. Sci., Part A: Polym.
Chem. 2008, 46, 2820–2832.
(21) Li, N.; Zhang, S.; Liu, J.; Zhang, F. Macromolecules 2008, 41,
4165–4172.
(22) Kobayashi, T.; Rikukawa, M.; Sanui, K.; Ogata, N. Solid State
Ionics 1998, 106, 219–225.
(23) Fujimoto, C. H.; Hickner, M. A.; Cornelius, C. J.; Loy, D. A.
Macromolecules 2005, 38, 5010–5016.
(24) Wu, S. Q.; Qiu, Z. M.; Zhang, S. B.; Li, Z. Y. Polymer 2006, 47,
6993–7000.
(25) Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.;
Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.;
Zelenay, P.; More, K.; Stroh, K.; Zawodzinski, T.; Boncella, J.;
McGrath, J. E.; Inaba, M.; Miyatake, K.; Hori, M.; Ota, K.;
Ogumi, Z.; Miyata, S.; Nishikata, A.; Siroma, Z.; Uchimoto, Y.;
Yasuda, K.; Kimijima, K. I.; Iwashita, N. Chem. Rev. 2007, 107,
3904–3951.
(26) Rikukawa, M.; Sanui, K. Prog. Polym. Sci. 2000, 25, 1463–1502.
(27) Ghassemi, H.; McGrath, J. E.; Zawodzinski, T. A. Polymer 2006,
47, 4132–4139.
(28) Bae, B.; Miyatake, K.; Watanabe, M. Macromolecules 2009, 42,
1873–1880.
(29) Kreuer, K. D. J. Membr. Sci. 2001, 185, 29–39.
(30) Einsla, B. R.; McGrath, J. E. Am. Chem. Soc. Div. Fuel Chem. 2004,
49, 616–618.
Originally, attempts were made to prepare highly sulfonated
poly(phenyl sulfone) with pendent sulfonic acid groups and high
IEC values using these monomers. However, the precursor
poly(sulfide sulfone) had low viscosity and molecular weight
and thus could not be fabricated into flexible and tough mem-
branes. The lower molecular weight was attributed to a steric
hindrance effect, which results from a combination of the bulky
pendent phenyl groups and the larger thiolate nucleophile. We
are currently exploring other reaction conditions in order to
increase the molecular weight.
(31) Lafitte, B.; Puchner, M.; Jannasch, P. Macromol. Rapid Commun.
2005, 26, 1464–1469.
(32) Lafitte, B.; Jannasch, P. Adv. Funct. Mater. 2007, 17, 2823–2834.
(33) Ghassemi, H.; McGrath, J. E. Polymer 2006, 47, 4132–4139.
(34) Matsumura, S.; Hlil, A. R.; Lepiller, C.; Gaudet, J.; Guay, D.; Shi,
Z.; Holdcroft, S.; Hay, A. S. Macromolecules 2008, 41, 281–284.
(35) Matsumura, S.; Hlil, A. R.; Du, N.; Lepiller, C.; Gaudet, J.; Guay,
D.; Shi, Z.; Holdcroft, S.; Hay, A. S. J. Polym. Sci., Part A: Polym.
Chem. 2008, 44, 3860–3868.
Acknowledgment. This research was supported by the WCU
(World Class University) program, National Research Founda-
tion (NRF) of the Korean Ministry of Science and Technology
(No. R31-2008-000-10092-0), which we gratefully acknowledge.
(36) Schuster, M.; Kreuer, K. D.; Andersen, H. T.; Maier, J. Macro-
molecules 2007, 40, 598–607.
References and Notes
(37) Schuster, M.; de Araujo, C. C.; Atanasov, V.; Anderson, H. T.;
Kreuer, K. D.; Maier, J. Macromolecules 2009, 42, 3129–3137.
(38) Kim, Y. S.; Einsla, B.; Sankir, M.; Harrison, W.; Pivovar, B. S.
Polymer 2006, 47, 4026–4035.
(1) Tant, M. R.; Mauritz, K. A.; Wilkes, G. L. Ionomers; Chapman &
Hall: New York, 1997.
(2) Carrette, L.; Friedrich, K. A.; Stimming, U. Fuel Cells 2001, 1,
5–39.
(39) Liu, B.; Robertson, G. P.; Guiver, M. D. Am. Chem. Soc. Polym.
Mater. Sci. Eng. Prepr. 2006, 95, 206–207.
(3) Costamagna, P.; Srinivasan, S. J. Power Sources 2001, 102, 253–
269.
(40) Liu, B.; Robertson, G. P.; Kim, D.-S.; Guiver, M. D.; Hu, W.;
Jiang, Z. Macromolecules 2007, 40, 1934–1944.
(4) Roziere, J.; Jones, D. J. Annu. Rev. Mater. Res. 2003, 33, 503–555.
(5) Lakshmanan, B.; Huang, W.; Olmeijer, D.; Weidner, J. W. Elec-
trochem. Solid-State Lett. 2003, 6, A282–A285.
(6) Mathias, M. F.; Makharia, R.; Gasteiger, H. A.; Conley,
J. J.; Fuller, T. J.; Gittleman, C. J.; Kocha, S. S.; Miller, D. P.;
Mittelsteadt, C. K.; Xie, T.; Yan, S. G.; Yu, P. T. Interface 2005, 14,
24–36.
(41) Liu, B.; Kim, Y. S.; Hu, W.; Robertson, G. P.; Pivovar, B. S.;
Guiver, M. D. J. Power Sources 2008, 185, 899–903.
(42) Kim, Y. S.; Guiver, M. D. Macromolecules 2009, 42, 957–963.
(43) Liu, B.; Robertson, G. P.; Kim, D.-S.; Sun, X.; Jiang, Z.; Guiver,
M. D. Polymer 2010, 51, 403–413.
(7) Wang, F.; Hickner, M.; Kim, Y. S.; Zawodzinski, T. A.; McGrath,
J. E. J. Membr. Sci. 2002, 197, 231–242.
(44) Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath,
J. E. Chem. Rev. 2004, 104, 587–611.
(8) Chikashige, Y.; Chikyu, Y.; Miyatake, K.; Watanabe, M. Macro-
molecules 2005, 38, 7121–7126.
(9) Xing, P.; Robertson, G. P.; Guiver, M. D.; Mikhailenko, S. D.;
(45) Peckham, J. T.; Schmeisser, J.; Rodgersa, M.; Holdcroft, S.
J. Mater. Chem. 2007, 17, 3255–3265.
(46) Tsang, E. M. W.; Zhang, Z.; Shi, Z.; Soboleva, T.; Holdcroft, S.
Wang, K.; Kaliaguine, S. J. Membr. Sci. 2004, 229, 95–106.
J. Am. Chem. Soc. 2007, 129, 15106–15107.