C O M M U N I C A T I O N S
strongly favored, is primarily responsible for the sharp melting
behavior in a cooperative, cascade melting mechanism.
In conclusion, we have experimentally demonstrated for the first
time that aggregates with two parallel DNA duplexes in close
proximity can interact cooperatively, consistent with the prediction
by the neighboring-duplex/effective-concentration model.14,15 With
the help of coarse-grain molecular dynamics simulations, we can
now begin to construct accurate analytical models that allow us to
understand the thermodynamic parameters governing the coopera-
tive interactions that occur when DNA duplexes aggregate. This
knowledge will enable researchers to design better DNA-hybrid
materials for a wide range of applications.
Acknowledgment. We thank Drs. Brian Stepp and Erbay Yigit
for their help with the DNA melting and PAGE-gel experiments.
Financial support for this work was provided by the NSF (Grant
EEC-0647560 through the NSEC program) and the NIH (NCI
1U54CA119341-01 through the CCNE program).
Figure 4. Melting curves for dimer 8 (3:7; 0.76 µM) and dimer 4 (3:3′;
0.76 µM) in PBS buffer (10 mM, pH 7.0, 150 mM NaCl). Inset shows the
first derivatives of the melting curves.
Supporting Information Available: Synthetic procedures and
characterization data for rigid small molecule-DNA hybrids; methods
and data for hybridization experiments; theoretical equations for the
analytical model. This material is available free of charge via the
bimolecular reaction in which the effective local concentration of
the second arms (see SI) is greatly enhanced compared to the
solution concentration. For the reverse (melting) process, the first
step ([ab2] f [ab1]) is therefore entropically disfavored, but the
second step ([ab1] f [a] + [b]) is strongly favored. Additional
factors that favor cooperative melting arise as a result of counterion
clouds which are shared between the two duplexes in [ab2], but
not in later stages, and can be readily modeled by CGMD
simulations.14
References
(1) Fischler, M.; Simon, U. J. Mater. Chem. 2009, 19, 1518–1523.
(2) Wang, K. M.; Tang, Z. W.; Yang, C. Y. J.; Kim, Y. M.; Fang, X. H.; Li,
W.; Wu, Y. R.; Medley, C. D.; Cao, Z. H.; Li, J.; Colon, P.; Lin, H.; Tan,
W. H. Angew. Chem., Int. Ed. 2009, 48, 856–870.
(3) Dupraz, C. J. F.; Nickels, P.; Beierlein, U.; Huynh, W. U.; Simmel, F. C.
Superlattices Microstruct. 2003, 33, 369–379.
(4) Eckardt, L. H.; Naumann, K.; Pankau, W. M.; Rein, M.; Schweitzer, M.;
Windhab, N.; von Kiedrowski, G. Nature 2002, 420, 286.
(5) Summerer, D.; Marx, A. Angew. Chem., Int. Ed. 2002, 41, 89–90.
(6) Xu, J.; Tan, G. J. J. Comput. Theor. Nanosci. 2007, 4, 1219–1230.
(7) Ezziane, Z. Nanotechnology 2006, 17, R27–R39.
(8) Condon, A. Nat. ReV. Genet. 2006, 7, 565–575.
(9) Cho, A. Science 2000, 288, 1152–1153.
(10) Ouyang, Q.; Kaplan, P. D.; Liu, S. M.; Libchaber, A. Science 1997, 278,
446–449.
(11) Pool, R. Science 1995, 268, 498–499.
(12) Taton, T. A.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem.
Soc. 2000, 122, 6305–6306.
Figure 5. A schematic presentation of the hybridization of rSMDH2:
rSMDH2 dimer showing three possible states.
(13) Gibbs, J. M.; Park, S.-J.; Anderson, D. R.; Watson, K. J.; Mirkin, C. A.;
Nguyen, S. T. J. Am. Chem. Soc. 2005, 127, 1170–1178.
(14) Prytkova, T. R.; Eryazici, I.; Stepp, B.; Nguyen, S. B.; Schatz, G. C. J.
Phys. Chem. B 2010, 114, 2627–2634.
Based on the aforementioned effective concentration model and
adjusted thermodynamic parameters from CGMD simulations (see
SI), analytical melting curves can be generated for dimer 6 (fwhm
) 4.7 °C, Figure 3) that closely mimic the experimental melting
profiles and Tm increases. This close agreement suggests that our
entropic attribution for the melting of SMDH2 materials is a
reasonable one: while the first dehybridization is entropically
disfavored in comparison to the melting of free DNA duplexes in
solution, the second step, where most of the entropy is released is
(15) Jin, R. C.; Wu, G. S.; Li, Z.; Mirkin, C. A.; Schatz, G. C. J. Am. Chem.
Soc. 2003, 125, 1643–1654.
(16) Kudlay, A.; Gibbs, J. M.; Schatz, G. C.; Nguyen, S. T.; De la Cruz, M. O.
J. Phys. Chem. B 2007, 111, 1610–1619.
(17) Long, H.; Kudlay, A.; Schatz, G. C. J. Phys. Chem. B 2006, 110, 2918–
2926.
(18) Stepp, B. R.; Gibbs-Davis, J. M.; Koh, D. L. F.; Nguyen, S. T. J. Am.
Chem. Soc. 2008, 130, 9628–9629.
(19) Jessen, C. H.; Pedersen, E. B. HelV. Chim. Acta 2004, 87, 2465–2471.
JA107232X
9
17070 J. AM. CHEM. SOC. VOL. 132, NO. 48, 2010