ϩ
ϩ
؉
d[BP
ؒ ؒ ؒ MV ]/dt =
20 T. Endo, Y. Saotome and M. Okawara, J. Am. Chem. Soc., 1984,
2
؉
ϩ
؉
106, 1124.
k [BP ؒ ؒ ؒ MV ] ϩ k [BP ][MV ] Ϫ
23
43
2
1 E. H. Yonemoto, G. B. Saupe, R. H. Schmehl, S. M. Hubig,
R. L. Riley, B. L. Iverson and T. E. Mallouk, J. Am. Chem. Soc.,
ϩ
؉
(
k32 ϩ k )[BP ؒ ؒ ؒ MV ] = 0 (10)
34
1
994, 116, 4786.
22 X. Xu, K. Shreder, B. L. Iverson and A. J. Bard, J. Am. Chem. Soc.,
996, 118, 3656.
23 S. Yasui, K. Shioji, M. Tsujimoto and A. Ohno, Chem. Lett., 1995,
83.
ϩ
؉
؉
d[BP
]/dt = k [BP
ؒ ؒ ؒ MV ] Ϫ (k [MV ] ϩ
34
43
1
ϩ
] = 0
kNu[RXH])[BP
(11)
7
ؒ
24 The absorption maximum of the longer wavelength observed in our
study was slightly blue-shifted compared with the maximum (608
d[BP -XR]/dt =
ϩ
ؒ
2؉
kNu[RXH][BP
] Ϫ k [BP -XR][MV ] = 0 (12)
Ϫ
50
nm) observed for the PF6 salt in an aprotic solvent such as
acetonitrile, dichloromethane, or THF (ref. 16). This shift could
result either from the large amount of alcohol present in our
؉
ϩ
؉
ؒ
2؉
d[MV ]/dt = k [BP ؒ ؒ ؒ MV ] ϩ k [BP -XR][MV ] Ϫ
3
4
50
؉
ϩ
؉
reaction system or from the difference in the counter anion of MV .
5 The UV–visible spectrum showed isosbestic points at 260 and 294
nm.
k [BP ][MV ] (13)
4
3
2
2؉
ϩ
؉
ϩ
ؒ
[
BP ؒ ؒ ؒ MV ], [BP ؒ ؒ ؒ MV ], [BP ], and [BP -XR] in
Scheme 2, respectively, are in the steady-state concentrations.
The rate expression is given in eqn. (13). Eliminating
BP ؒ ؒ ؒ MV ], [BP -XR], and [BP ] in eqn. (13) through
eqns. (9)–(12) and taking k = k k k , k = k k k , and
26 In spite of repeated distillation on calcium hydride, the acetonitrile
Ϫ2 Ϫ3
used contained about 5 × 10 mol dm water (ref. 11c).
7 C. P. Andrieux, C. Blocman, J.-M. Dumas-Bouchiat and J.-M.
Savéant, J. Am. Chem. Soc., 1979, 101, 3431.
8 For a comprehensive work on dissociative SET, see J.-M. Savéant,
Acc. Chem. Res., 1993, 26, 455.
2
2
ϩ
؉
ؒ
ϩ
[
ϩ Ϫ
1
2
23 34
21 32 43
a = (k21 ϩ k )(k ϩ k ) Ϫ k k , we obtain eqn. (7).
23
32
34
23 32
29 J. Grimshaw, J. R. Langan and G. A. Salmon, J. Chem.Soc., Faraday
Trans., 1994, 90, 75.
3
0 M. S. Workentin and R. L. Donkers, J. Am. Chem. Soc., 1998, 120,
2664.
Acknowledgements
3
3
3
1 S. Antonello and F. Maran, J. Am. Chem. Soc., 1998, 120, 5713.
2 G. B. Schuster, J. Am. Chem. Soc., 1979, 101, 5851.
3 S. Bank and D. A. Juckett, J. Am. Chem. Soc., 1975, 97, 567.
This work was financially supported in part by a Grant-in-Aid
for Scientific Research (C) (No. 09640654) from the Ministry of
Education, Science, Sports, and Culture, Japan. One of
the authors (S. Y.) acknowledges the financial support of a
Tezukayama Research Grant in 1997.
34 H. C. Gardner and J. K. Kochi, J. Am. Chem. Soc., 1975, 97, 1855.
35 T. W. Chan and T. C. Bruice, J. Am. Chem. Soc., 1977, 99, 7287.
3
3
6 M. J. Thomas and C. S. Foote, Photochem. Photobiol., 1978, 27, 683.
7 S. Yasui, K. Itoh, M. Tsujimoto and A. Ohno, Chem. Lett., 1998,
1
019.
3
8 A. G. Davies, D. Griller and B. P. Roberts, J. Chem. Soc., Perkin
Trans. 2, 1972, 2224.
References
1
G. Schiavon, S. Zecchin and G. Cogoni, Electroanal. Chem.
Interfacial Electrochem., 1973, 48, 425.
39 (a) W. G. Bentrude, J.-J. L. Fu and P. E. Rogers, J. Am. Chem. Soc.,
1973, 95, 3625; (b) W. G. Bentrude, Acc. Chem. Res., 1982, 15, 117.
40 L. Horner, F. Röttger and H. Fuchs, Chem. Ber., 1963, 96, 3141.
41 T.-L. Ho, in Hard and Soft Acids and Bases Principle in Organic
Chemistry, Academic Press, New York, 1977.
2
(a) W. B. Gara and B. P. Roberts, J. Chem. Soc., Chem. Commun.,
1
975, 949; (b) W. B. Gara and B. P. Roberts, J. Chem. Soc., Perkin
Trans. 2, 1978, 150.
3
4
5
6
7
H. Ohmori, T. Takanami and M. Masui, Tetrahedron Lett., 1985, 26,
42 K. E. DeBruin and S. Chandrasekaran, J. Am. Chem. Soc., 1973, 95,
2
199.
974.
M. Culcasi, Y. Berchadsky, G. Gronchi and P. Tordo, J. Org. Chem.,
991, 56, 3537.
B. W. Fullam and M. C. R. Symons, J. Chem. Soc., Dalton Trans.,
975, 861.
C. M. L. Kerr, K. Webster and F. Williams, J. Phys. Chem., 1975, 79,
650.
G. W. Eastland and M. C. R. Symons, J. Chem. Soc., Perkin Trans. 2,
977, 833.
43 E. Bosch and J. K. Kochi, J. Org. Chem., 1995, 60, 3172.
44 The condition is likely to hold in the present reaction. Apparently,
k23 Ӷ k21 and k ӷ k , so the first term in the denominator reduces
1
32
34
؉
1
to k [MV ]. The value of k can be diffusion-limited, but since
43 43
؉
[MV ] is much smaller than [ROH] under the experimental
؉
2
conditions, the term k [MV ] is not too large to be compared with
4
3
the term kNu[ROH].
1
45 C. J. Schlesener and J. K. Kochi, J. Org. Chem., 1984, 49, 3142.
46 E. Baciocchi, M. Bietti and M. Mattioli, J. Org. Chem., 1993, 58,
7106.
47 L. Eberson, J. Am. Chem. Soc., 1983, 105, 3192.
48 N. M. D. Brown, D. J. Cowley and W. J. Murphy, J. Chem. Soc.,
Chem. Commun., 1973, 592.
8
9
R. L. Powell and C. D. Hall, J. Am. Chem. Soc., 1969, 91, 5403.
(a) S. Yasui, M. Fujii, C. Kawano, Y. Nishimura and A. Ohno,
Tetrahedron Lett., 1991, 32, 5601; (b) S. Yasui, M. Fujii, C. Kawano,
Y. Nishimura, K. Shioji and A. Ohno, J. Chem. Soc., Perkin Trans. 2,
1
1
994, 177; (c) S. Yasui, K. Shioji and A. Ohno, Tetrahedron Lett.,
994, 35, 2695; (d) S. Yasui, K. Shioji and A. Ohno, Heteroat.
49 T. W. Ebbesen and G. Ferraudi, J. Phys. Chem., 1983, 87, 3717.
Chem., 1995, 6, 223.
50 That there are some uncertainties in the rate constant for the
EtOH
MeOH
1
1
0 M. Ochiai, M. Kunishima, Y. Nagao, K. Fuji and E. Fujita,
J. Chem. Soc., Chem. Commun., 1987, 1708.
1 (a) S. Yasui and A. Ohno, Tetrahedron Lett., 1991, 32, 1047; (b)
S. Yasui, K. Shioji, M. Yoshihara, T. Maeshima and A. Ohno,
Tetrahedron Lett., 1992, 33, 7189; (c) S. Yasui, K. Shioji, A. Ohno
and M. Yoshihara, Chem. Lett., 1993, 1393; (d) S. Yasui, K. Shioji,
A. Ohno and M. Yoshihara, J. Org. Chem., 1995, 60, 2099.
reaction with methanol is why we take kNu
(not k
) as the
Nu
rel
standard in calculating the relative value of kNu, kNu
51 R. W. Taft, Jr., J. Am. Chem. Soc., 1952, 74, 3120.
52 To accommodate our data to Taft’s equation, k
.
ROH
MeOH
/kNu
was
Nu
rel
ROH
EtOH
used here instead of kNu = kNu /kNu
.
53 N. S. Isaacs, in Physical Organic Chemistry, Wiley, New York, 1987,
pp. 299–300.
1
1
1
1
2 G. Pandey, D. Pooranchand and U. T. Bhalerao, Tetrahedron, 1991,
54 The results in Table 5 also support our conclusion in the previous
section that the observed rate is independent of the decomposition
of the phosphonium intermediate. When butane-1,4-diol is a
nucleophile, the decomposition of the corresponding phosphonium
intermediate could be facilitated by formation of a six-membered
ring structure at the transition state. However, no augmentation in
kNu was appreciated in this reaction.
55 S. Kobayashi, T. Kitamura, H. Taniguchi and W. Schnabel, Chem.
Lett., 1983, 1117.
4
7, 1745.
3 D. Camp, G. R. Hanson and I. D. Jenkins, J. Org. Chem., 1995, 60,
977.
2
4 S. Ganapathy, K. P. Dockery, A. E. Sopchik and W. G. Bentrude,
J. Am. Chem. Soc., 1993, 115, 8863.
5 H. Ohmori, K. Sakai, N. Nagai, Y. Mizuki and M. Masui, Chem.
Pharm. Bull., 1985, 33, 373.
rel
1
1
6 T. M. Bockman and J. K. Kochi, J. Org. Chem., 1990, 55, 4127.
7 K. Kalyanasundaram, T. Colassis, R. Humphry-Baker, P. Savarino,
E. Barni, E. Pelizzetti and M. Grätzel, J. Am. Chem. Soc., 1989, 111,
56 S. Steenken and R. A. McClelland, J. Am. Chem. Soc., 1990, 112,
9648.
3
300.
57 J. Bartl, S. Steenken and H. Mayr, J. Am. Chem. Soc., 1991, 113,
7710.
58 (a) V. D. Parker, Acc. Chem. Res., 1984, 17, 243; (b) V. D. Parker and
M. Tilset, J. Am. Chem. Soc., 1987, 109, 2521; (c) B. Reitstöen and
V. D. Parker, J. Am. Chem. Soc., 1991, 113, 6954; (d) M. S.
1
1
8 S. Sankararaman, K. B. Yoon, T. Yabe and J. K. Kochi, J. Am.
Chem. Soc., 1991, 113, 1419.
9 M. Z. Hoffman, D. R. Prasad, G. Jones, II and V. Malba, J. Am.
Chem. Soc., 1983, 105, 6360.
J. Chem. Soc., Perkin Trans. 2, 1999, 855–862
861