“artemisinin + linker + lipophilic alkyl carbon chain”.
Through systematic investigations on these structurally
related artemisinin analogues, it was found that the lipophilic
carbon chain plays an important role in determining the
cytotoxicities of the modified artemisinin analogues.
To maximize the structural diversity of artemisinin ana-
logues and the efficiency of their synthesis, aldehyde 4 and
acid 5 derived from 1 were prepared as the key intermediates.
Starting from 4 and 5, amides 6, esters 7, alcohols 8, and
ketones 9, 10, 11, and 13 bearing alkyl carbon chains of
different length were prepared (Scheme 1, overall yields from
Figure 1. Artemisinin (qinghaosu, 1).
the peroxide moiety of artemisinin and its derivatives is
crucial to their antimalarial activities.3,4,8a,12,13 Given the
remarkable success of artemisinin in the treatment of malaria,
there is growing interest in exploring the other therapeutic
properties of artemisinin.
Scheme 1. Synthesis of Artemisinin Derivatives 6-11 and 13
A search of the literature revealed that cytotoxic artemisi-
nin analogues could be synthesized via chemical modifica-
tions of the relatively nontoxic artemisinin at its C10/C16
position by covalent attachment of alkyl/aryl groups.14-18 In
addition, by judicious selection of linkers, a variety of
dimeric, trimeric, and even tetrameric cytotoxic artemisinin
derivatives have been prepared.19-21 However, given the
diverse chemical structures of these cytotoxic artemisinin
analogues, identification of the key factors contributing to
their cytotoxicities and rational design of new classes of
cytotoxic artemisinin analogues is difficult. In this regard, it
is of importance to conduct structure-activity relationship
(SAR) studies to assist the design and synthesis of new
cytotoxic artemisinin derivatives.
Here we report the synthesis and cytotoxicity studies of
artemisinin derivatives modified by a modular approach of
(12) O’Neill, P. M.; Miller, A.; Bishop, L. P. D.; Hindley, S.; Maggs, J.
L.; Ward, S. A.; Roberts, S. M.; Scheinmann, F.; Stachulski, A. V.; Posner,
G. H.; Park, B. K. J. Med. Chem. 2001, 44, 58-68.
(13) Jung, M.; Li, X.; Bustos, D. A.; ElSohly, H. N.; McChesney, J. D.;
Milhous, W. K. J. Med. Chem. 1990, 33, 1516-1518.
(14) Woerdenbag, H. J.; Moskal, T. A.; Pras, N.; Malingre, T. M.; El-
Feraly, F. S.; Kampinga, H. H.; Konings, A. W. T. J. Nat. Prod. 1993, 56,
849-856.
(15) Jung, M. Bioorg. Med. Chem. Lett. 1997, 7, 1091-1094.
(16) (a) Chen, H.-H.; Zhou, H.-J.; Fang, X. Pharmacol. Res. 2003, 48,
231-236. (b) Chen, H.-H.; Zhou, H.-J.; Wu, G.-D.; Lou, X.-E. Pharmacol-
ogy 2004, 71, 1-9. (c) Chen, H.-H.; Zhou, H.-J.; Wang, W.-Q.; Wu, G.-D.
Cancer Chemother. Pharmacol. 2004, 53, 423-432. (d) Chen, H.-H.; You,
L.-L.; Li, S.-B. Cancer Lett. 2004, 211, 163-173.
1 were shown in parentheses) (see the Supporting Informa-
tion for the detailed synthetic schemes).
Apart from the naturally occurring D-six-membered ring
artemisinin, a series of D-five-membered ring artemisinin
derivatives 19-21 were synthesized from key intermediates
17 and 18 (Figure 2).22
(17) Wu, J.-M.; Shan, F.; Wu, G.-S.; Li, Y.; Ding, J.; Xiao, D.; Han,
J.-X.; Atassi, G.; Leonce, S.; Caignard, D.-H.; Renard, P. Eur. J. Med. Chem.
2001, 36, 469-479.
(18) Haynes, R. K.; Chan, H.-W.; Lam, W.-L.; Tsang, H.-W.; Hsiao,
W.-L. PCT Int. Appl. WO 2000004026 A1, 2000.
(19) (a) Posner, G. H.; Ploypradith, P.; Parker, M. H.; O’Dowd, H.; Woo,
S.-H.; Northrop, J.; Krasavin, M.; Dolan, P.; Kensler, T. W.; Xie, S.; Shapiro,
T. A. J. Med. Chem. 1999, 42, 4275-4280. (b) Posner, G. H.; Northrop,
J.; Paik, I.-H.; Borstnik, K.; Dolan, P.; Kensler, T. W.; Xie, S.; Shapiro, T.
A. Bioorg. Med. Chem. 2002, 10, 227-232. (c) Posner, G. H.; Paik, I.-H.;
Sur, S.; McRiner, A. J.; Borstnik, K.; Xie, S.; Shapiro, T. A. J. Med. Chem.
2003, 46, 1060-1065. (d) Jeyadevan, J. P.; Bray, P. G.; Chadwick, J.;
Mercer, A. E.; Byrne, A.; Ward, S. A.; Park, B. K.; Williams, D. P.;
Cosstick, R.; Davies, J.; Higson, A. P.; Irving, E.; Posner, G. H.; O’Neill,
P. M. J. Med. Chem. 2004, 47, 1290-1298. (e) Posner, G. H.; McRiner,
A. J.; Paik, I.-H.; Sur, S.; Borstnik, K.; Xie, S.; Shapiro, T. A.; Alagbala,
A.; Foster, B. J. Med. Chem. 2004, 47, 1299-1301.
The in Vitro cytotoxicity of the artemisinin derivatives
against a human hepatocellular carcinoma cell line, HepG2,
were conducted by using the MTT assay.23 The cytotoxicities
(22) For selected references on the synthesis and biological studies of
D-five-membered ring artemisinins, see: (a) Venugopalan, B.; Bapat, C.
P.; Karnik, P. J. Bioorg. & Med. Chem. Lett. 1994, 4, 751-752. (b)
Venugopalan, B.; Bapat, C. P.; Karnik, P. J.; Chatterjee, D. K.; Iyer, N.;
Lepcha, D. J. Med. Chem. 1995, 38, 1922-1927. (c) Haynes, R. K.;
Vonwiller, S. C.; Wang, H.-J. Tetrahedron Lett. 1995, 36, 4641-4642. (d)
Grellepois, F.; Chorki, F.; Crousse, B.; Ourevitch, M.; Bonnet-Delpon, D.;
Begue, J.-P. J. Org. Chem. 2002, 67, 1253-1260. (e) Avery, M. A.; Alvim-
Gaston, M.; Rodrigues, C. R.; Barreiro, E. J.; Cohen, F. E.; Sabnis, Y. A.;
Woolfrey, J. R. J. Med. Chem. 2002, 45, 292-303.
(20) Jung, M.; Lee, S.; Ham, J.; Lee, K.; Kim, H.; Kim, S. K. J. Med.
Chem. 2003, 46, 987-994.
(21) Ekthawatchai, S.; Kamchonwongpaisan, S.; Kongsaeree, P.; Tarn-
chompoo, B.; Thebtaranonth, Y.; Yuthavong, Y. J. Med. Chem. 2001, 44,
4688-4695.
(23) Mosmann, T. J. Immunol. Methods 1983, 65, 55-63.
1562
Org. Lett., Vol. 7, No. 8, 2005