Page 5 of 7
PNl ee aws eJ do ou rnn oa tl ao df j uC sht emm ai rs gt ir ny s
Journal Name ARTICLE
9
1
1
1
1
1
1
1
1
1
1
2
2
2
37.
0 S. S. Percival, G. P. Kauwell, E. Bowser and M. Wagner, J. Am.
Coll. Nutr., 1999, 18, 614-619.
(
1
5 μM) in a mixture of PBS (0.01 M, pH 7.4) and acetonitrile (9:
, v/ v) for 30 min, which led to barely intracellular florescence
as determined by inverted fluorescent microscope (Fig. 5b).
Then the cells preloaded with probe (5 μM) were further
3
DOI: 10.1039/C5NJ03649F
A
1 E. Gaggelli, H. Kozlowski, D. Valensin and G. Valensin, Chem.
Rev., 2006, 106, 1995-2044.
2+
incubated with Cu (50 μM) in PBS for 30 min, whereupon a
significant increase of fluorescence inside the cells was
observed (Fig. 5c). Bright-field measurements confirmed that
the cells were viable throughout the experiments (Fig. 5a).
Bioimaging of lower concentrations of Cu (5 μM and 20 μM)
was also realized (Fig. S11). These results indicate that probe
is low cytotoxic, cell membrane permeable and capable of
2 H. Mu, R. Gong, Q. Ma, Y. Sun and E. Fu, Tetrahedron Lett.,
2
007, 48, 5525-5529.
3 A. W. Varnes, R. B. Dodson and E. Wehry, J. Am. Chem. Soc.,
972, 94, 946-950.
4 K. Rurack, U. Resch, M. Senoner and S. Daehne, J. Fluoresc.,
1993, , 141-143.
1
2+
A
3
5 Y. Zheng, K. M. Gattás-Asfura, V. Konka and R. M. Leblanc,
Chem. Commun., 2002, 2350-2351.
2+
imaging Cu in living cells.
6 L. Jiao, J. Li, S. Zhang, C. Wei, E. Hao and M. G. H. Vicente, New
J. Chem., 2009, 33, 1888-1893.
7 Z.-C. Wen, R. Yang, H. He and Y.-B. Jiang, Chem. Commun.,
2
006, 106-108.
8 J. Xie, M. Ménand, S. Maisonneuve and R. Métivier, J. Org.
Chem., 2007, 72, 5980-5985.
9 M.-M. Yu, Z.-X. Li, L.-H. Wei, D.-H. Wei and M.-S. Tang, Org.
Lett., 2008, 10, 5115-5118.
2+
Fig. 5 Fluorescence imaging of probe
A
with Cu in HepG2 cells.
0 M. E. Germain and M. J. Knapp, Chem. Soc. Rev., 2009, 38
543-2555.
1 G.-K. Li, Z.-X. Xu, C.-F. Chen and Z.-T. Huang, Chem. Commun.,
,
(
a) Bright-field image of HepG2 cells preloaded with probe A (5
2
μM) in a mixture of PBS (0.01 M, pH 7.4) and acetonitrile (9: 1,
v/ v) for 30 min and then incubated with Cu2+ (50 μM) in PBS for
2
008, 1774-1776.
additional 30 min at 37
channel of HepG2 cells treated with
C. (b) Fluorescence image in green
(5 μM) for 30 min at 37
2 X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. Joong Hong, Y. J. Yoon and
A
J. Yoon, J. Org. Chem., 2006, 71, 2881-2884.
C. (c) Fluorescence image in green channel of HepG2 cells 23 Y. Zhou, F. Wang, Y. Kim, S.-J. Kim and J. Yoon, Org. Lett., 2009,
preloaded with probe
A
(5 μM) for 30 min and then incubated
with Cu (50 μM) for additional 30 min. Scale bar represents
00 μm.
11, 4442-4445.
2+
24 G. He, X. Zhao, X. Zhang, H. Fan, S. Wu, H. Li, C. He and C. Duan,
New J. Chem., 2010, 34, 1055.
2
2
1
5 A. P. Silva, Analyst, 2009, 134, 2385-2393.
6 R. A. Bissell, A. P. de Silva, H. N. Gunaratne, P. M. Lynch, G. E.
Maguire, C. P. McCoy and K. S. Sandanayake, in Photoinduced
Electron Transfer V, Springer, 1993, pp. 223-264.
Conclusions
27 Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima and T. Nagano, J. Am.
Chem. Soc., 2004, 126, 3357-3367.
In summary, we have designed and synthesized a novel
coumarin-based fluorescence turn-on probe
signaling mechanism of N=N isomerization, which can be
utilized in aqueous solution at a wide pH range. The probe
features a rapid response to Cu2+ with an evident fluorescence
enhancement owing to the formation of the new compound
triazole. Remarkably, probe
selectivity for Cu over other metal ions. Significantly, the
intracellular Cu imaging capacity in HepG2 cells further
demonstrates that probe is a valuable tool in living systems.
2
8 A. P. De Silva, H. N. Gunaratne, T. Gunnlaugsson, A. J. Huxley,
C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev., 1997,
97, 1515-1566.
9 E. J. Cho, J. W. Moon, S. W. Ko, J. Y. Lee, S. K. Kim, J. Yoon and
K. C. Nam, J. Am. Chem. Soc., 2003, 125, 12376-12377.
2+
A for Cu with
2
3
0 Z. Xu, Y. Xiao, X. Qian, J. Cui and D. Cui, Org. Lett., 2005,
92.
7, 889-
8
A shows excellent sensitivity and 31 C. Berney and G. Danuser, Biophys. J., 2003, 84, 3992-4010.
2+
32 L. Long, W. Lin, B. Chen, W. Gao and L. Yuan, Chem. Commun.,
2011, 47, 893-895.
2+
3
3 Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi and C. Huang,
Chem. Commun., 2008, 3387-3389.
A
3
4 J. Wu, W. Liu, J. Ge, H. Zhang and P. Wang, Chem. Soc. Rev.,
2
011, 40, 3483-3495.
Notes and references
35 B. Sen, S. Pal, S. Banerjee, S. Lohar and P. Chattopadhyay, Eur.
J. Inorg. Chem., 2015, 2015, 1383-1389.
1
2
3
4
5
6
L. Prodi, F. Bolletta, M. Montalti and N. Zaccheroni, Coord.
Chem. Rev., 2000, 205, 59-83.
D. Yang, H.-L. Wang, Z.-N. Sun, N.-W. Chung and J.-G. Shen, J.
Am. Chem. Soc., 2006, 128, 6004-6005.
P. D. Beer and P. A. Gale, Angew. Chem. Int. Ed., 2001, 40, 486-
3
6 Z. Yang, W. Qin, N. L. Leung, M. Arseneault, J. W. Lam, G. Liang,
H. H. Sung, I. D. Williams and B. Z. Tang, J. Mater. Chem. C,
2
016, 4, 99-107.
3
7 J.-S. Wu, W.-M. Liu, X.-Q. Zhuang, F. Wang, P.-F. Wang, S.-L.
Tao, X.-H. Zhang, S.-K. Wu and S.-T. Lee, Org. Lett., 2007,
3-36.
9
,
5
16.
3
R. Martínez-Máñez and F. Sancenón, Chem. Rev., 2003, 103
419-4476.
,
3
3
4
8 L. C. C. Lee, J. C. W. Lau, H. W. Liu and K. K. W. Lo, Angew.
Chem., 2016, 128, 1058-1061.
4
A. Santon, V. Albergoni, G. C. Sturniolo and P. Irato, Biochim.
Biophys. Acta, 2004, 1688, 223-231.
R. H. Holm, P. Kennepohl and E. I. Solomon, Chem. Rev., 1996,
96, 2239-2314.
9 H. Y. Lin, T. Y. Chen, C. K. Liu and A. T. Wu, Luminescence, 2016,
31, 236-240.
0 R. Alam, T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri and
M. Ali, RSC Adv., 2016, , 1268-1278.
6
7
8
G. Bryan, Proc. Biol. Sci., 1971, 177, 389-410.
A. Mathie, G. L. Sutton, C. E. Clarke and E. L. Veale, Pharmacol.
Ther., 2006, 111, 567-583.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins